PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Productivity evaluation of wheat varieties under modern irrigation using AquaCrop software

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
All field investigations were carried out in the Northern Gezira irrigation project, located in Nineveh Governorate, Iraq. The aim was to evaluate the productivity of the ‘Barcelona’ and ‘Iba’a’ wheat varieties. The assessment process was performed from two perspectives: field data analysis and simulation using AquaCrop software. The evaluation focused on product efficiency and rationalisation of irrigation water, and the identification of a suitable irrigation system. The complementary irrigation was applied by giving a total irrigation water depth of 234 mm to the ‘Iba’a’ wheat variety where the seed productivity was about 4,400 kg∙ha-1. Nevertheless, the ‘Barcelona’ variety achieved a significantly higher yield of 7,200 kg∙ha-1 under the same irrigation conditions, indicating its superior performance. Moreover, the analytical data was agreed with the field study where the simulation results showed that the ‘Iba’a’ variety productivity was 4,596 kg∙ha-1, while the ‘Barcelona’ variety achieved 7,340 kg∙ha-1. It was also shown that the value of water use efficiency for the ‘Iba’a’ variety wheat crop was equal to 1.108 kg∙m-3, while for the ‘Barcelona’ wheat variety it became equal to 1.813 kg∙m-3.
Wydawca
Rocznik
Tom
Strony
195--200
Opis fizyczny
Bibliogr. 30 poz., fot., tab., wykr.
Twórcy
  • Northern Technical University, Technical Institute in Mosul, Al-Minassa St, 41001, Mosul, Iraq
  • Northern Technical University, Agricultural Technical College, Al-Minassa St, 41001, Iraq
  • University of Mosul, College of Petroleum and Mining Engineering, Al-Minassa St, 41001, Mosul, Iraq
  • Northern Technical University, Technical Institute, 36007, Al-Hawija, Iraq
Bibliografia
  • Agary, A. et al. (2002) “Wheat productivity under supplemental irrigation in Northern Iraq,” On-Farm Water Research Report Series, 2. Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA) Available at: https://repo.mel.cgiar.org/items/18086f90-a1da-42c8-90a6-005305825daa (Accessed: July 8, 2022).
  • Al Najafi, I.H. and Mahdi, W.A. (2009) “The effect of supplemental irrigation on the rate of yield of wheat crop in Nineveh Governorate for the agriculture season 2000–2001,” Tanmiyat Al-Rafidain, 31(93), pp. 307–324. [In Arabic].
  • Al-Kaisi, M.M., Berrada, A. and Stack, M. (1997) “Evaluation of irrigation scheduling program and spring wheat yield response in southwestern Colorado,” Agricultural Water Management, 2, pp. 137–148. Available at: https://doi.org/10.1016/S0378-3774(97)00010-3.
  • Al-Lami, A.A.A.A., Al-Rawi, S.S. and Ati, A.S. (2023) “Evaluation of the aquacrop model performance and the impact of future climate changes on potato production under different soil management systems,” Iraqi Journal of Agricultural Sciences, 54 (1), pp. 253–267. Available at: https://doi.org/10.36103/ijas.v54i1.1698.
  • Alexandru, D. and Popescu, A. (2020) “Aquacrop waterproductivity model simulation for maize using different methods of calculating evapotranspiration,” Scientific Papers-Series a-Agronomy, 63(1), pp. 166–174. Available at: https://agronomyjournal.usamv.ro/pdf/2020/issue_1/Art22.pdf (Accessed: January 15, 2023).
  • Ali, E.H., Baker, Y.T. and Al-Douri, B.F. (2022) “The effect of supplementary irrigation on the productivity of three varieties of wheat in Nineveh governorate in Northern Iraq,” Iraqi Journal of Agricultural Sciences, 53(2), pp. 353–364. Available at: https://doi.org/10.36103/ijas.v53i2.1542.
  • Araya, A. et al. (2010) “Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare),” Agricultural Water Management, 97(11), pp. 1838–1846. Available at: https://doi.org/10.1016/j.agwat.2010.06.021.
  • Bello, Z.A. and Walker, S. (2017) “Evaluating AquaCrop model for simulating production of amaranthus (Amaranthus cruentus) a leafy vegetable, under irrigation and rainfed conditions,” Agricultural and Forest Meteorology, 247, pp. 300–310. Available at: https://doi.org/10.1016/j.agrformet.2017.08.003.
  • Doorenbos, J. et al. (1980) “Yield response to water,” Irrigation and Agricultural Development, (33), pp. 257–280. Available at: https://doi.org/10.1016/b978-0-08-025675-7.50021-2.
  • Doorenbos, J. and Pruitt, W.O. (1977) “Crop water requirement,” FAO Irrigation and Drainage Paper, 24. Rome, Italy: FAO. Available at: https://www.fao.org/4/s8376e/s8376e.pdf (Accessed: February 5, 2022).
  • Hachum, A.Y. and Abd, M.M. (2008) “Optimal water management in the Northern Al Jazeera irrigation product, Rabia Iraq,” in The third international conference on water resources and arid environment and the first Arab water forum. Riyadh, Saudi Arabia, November, 16–19 2008.
  • Hameed, A.I. and Mohammad, N.A. (2024) “The effect of using river water magnetization on corn yield and the properties of irrigation water and soil,” Salud, Ciencia y Tecnologia – Serie de Conferencias, 3, 874. Available at: https://doi.org/10.56294/sctconf2024874.
  • Hameed, A.I. and Salim, A.F. (2022) “The effect of three depths of subsurface drip irrigation levels with two types of soil on the percentage of soil moisture content,” Jurnal Teknologi, 84(4), pp. 149–157. Available at: https://doi.org/10.11113/jurnalteknologi.v84.17961.
  • Kanda, E.K., Senzanje, A. and Mabhaudhi, T. (2021) “Calibration and validation of the AquaCrop model for full and deficit irrigated cowpea (Vigna unguiculata (L.) Walp),” Physics and Chemistry of the Earth, 124. Available at: https://doi.org/10.1016/j.pce.2020.102941.
  • Kharrou, M.H. et al. (2011) “Water use efficiency and yield of winter wheat under different irrigation regimes in a semi-arid region,” Agricultural Sciences, 2(3), pp. 273–282. Available at: https://doi.org/10.4236/as.2011.23036.
  • Mansour, H.A., Gaballah, M.S. and Nofal, O.A. (2020) “Evaluating the water productivity by Aquacrop model of wheat under irrigation systems and algae,” Open Agriculture, 5(1), pp. 262–270. Available at: https://doi.org/10.1515/opag-2020-0029.
  • Mkhabela, M.S. and Bullock, P.R. (2012) “Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada,” Agricultural Water Management, 110, pp. 16–24. Available at: https://doi.org/10.1016/j.agwat.2012.03.009.
  • Oweis, T. and Hachum, A. (2006) “Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa,” Agricultural Water Management, 80(1–3), pp. 57–73. Available at: https://doi.org/10.1016/j.agwat.2005.07.004.
  • Papadopoulos, I., Metochis, C. and Chimonidou, D. (2005) “Irrigation systems performance: Case study of Cyprus,” in N. Lamaddalena et al. (eds.) Irrigation systems performance. Options Méditerranéennes : Série B. Etudes et Recherches, 52. Bari: CIHEAM, pp. 79–84. Available at: https://om.ciheam.org/web/controleurFrontal.php?action=afficherArticle&IDPDF=5002249 (Accessed: March 20, 2024).
  • Pascale de, S. et al. (2011) “Increasing water use efficiency in vegetable crop production: From plant to irrigation systems efficiency,” HortTechnology, 21(3), pp. 301–308. Available at: https://doi.org/10.21273/horttech.21.3.301.
  • Raes, D. (2009) The ETo Calculator. Reference Manual Version 3.1. Rome, Italy: FAO. Land and Water Division. Available at: https://www.fao.org/fileadmin/user_upload/faowater/docs/ReferenceManualETo.pdf (Accessed: September 25, 2024).
  • Raes, D. et al. (2023a) AquaCrop, Version 7.1. Reference Manual. Annexes. Rome, Italy: FAO. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/1479f444-c112-4faa-b3dc-bc73b0637332/content (Accessed: April 25, 2022).
  • Raes, D. et al. (2023b) “Simulation of alfalfa yield with AquaCrop,” Agricultural Water Management, 284, 108341. Available at: https://doi.org/10.1016/j.agwat.2023.108341.
  • Saad, A. et al. (2023) “AquaCrop model validation for simulating biomass and water productivity under climate change for potatoes,” Turkish Journal of Agricultural Engineering Research, 4(1), pp. 26–45. Available at: https://doi.org/10.46592/turkager.1247795.
  • Salman, M. (2021) The AquaCrop model – Enhancing crop water productivity. Ten years of development, dissemination and implementation 2009–2019. FAO Water Report, 47. Rome: FAO. Available at: https://doi.org/10.4060/cb7392en.
  • Sandhu, R. and Irmak, S. (2019) “Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation,” Agricultural Water Management, 223, 105687. Available at: https://doi.org/10.1016/j.agwat.2019.105687.
  • Sheet, E.H., Gazal, E.M. and Sheet, M.H. (2019) “Testing the performance of aquacrop model for sunflower production in the Middle of Iraq,” The Journal of The University of Duhok, 22 (1), pp. 58–68. Available at: https://doi.org/10.26682/avuod.2019.22.1.6.
  • Steduto, P. et al. (2012) “Crop yield response to water,” FAO Irrigation and Drainage Paper, 66. Rome, Italy: FAO. Available at: https://www.fao.org/4/i2800e/i2800e.pdf (Accessed: January 18, 2022).
  • Terán-Chaves, C.A., García-Prats, A. and Polo-Murcia, S.M. (2022) “Calibration and validation of the FAO AquaCrop water productivity model for perennial ryegrass (Lolium perenne L.),” Water, 14(23), 3933. Available at: https://doi.org/10.3390/w14233933.
  • Wellens, J. et al. (2022) “Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz),” Agricultural Water Management, 263. Available at: https://doi.org/10.1016/j.agwat.2022.107491.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4183bdf7-6b40-4dbd-8e2b-d16b58f64ad4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.