PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Memory response on generalized thermoelastic medium in context of dual phase lag thermoelasticity with non-local effect

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Theory of non-local continuum is contemporary appraised and is found to be supplementary coherent to capture the impacts of each and every point of the material at its single point. The conviction of memory dependent derivative is also newly appraised and is observed to be more intuitionistic for predicting the realistic character of the real-world obstacles. Attractiveness of the belief of a memory dependent derivative lies in its unique properties such as its significant constituents – a kernel function and time-delay are freely selected according to the requirement of a problem. The present study comprises a new meticulous thermoelastic heat conduction model for the homogeneous, isotropic, thermoelastic half space medium concerning memory effects and non-local effects. Governing equations are constructed on the basis of the newly appraised non-local generalized theory of thermoelasticity with two phase lags in the frame of a memory dependent derivative. Exact analytical solutions of the physical fields such as dimensionless temperature, displacement as well as thermal stress are evaluated by using a suitable technique of the Laplace transform. Quantitative results are determined in a time-domain for different values of time by taking the numerical inversion of the Laplace transform. Noteworthy role of the constituents of the memory dependent derivative such as kernel function as well as time-delay factor has been scrutinized on the crucial field variables of the medium through computational outcomes. Moreover, the impact of non-local parameter is examined on the variations of field quantities through the quantitative results.
Rocznik
Strony
69--88
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
  • Department of Mathematics, Nitishwar College, constituent unit of Babasaheb Bhimrao Ambedkar, Bihar University, Bihar, India
autor
  • Department of Mathematics, Qassim University, Buraydah, Saudi Arabia
autor
  • Department of Mathematics, Central University of South Bihar, Gaya, Bihar, India
autor
  • Department of Mathematics, T D PG College, U.P., India
autor
  • School of Sciences, Christ (Deemed to be University), Delhi NCR, India
Bibliografia
  • 1. M.A. Biot, Thermoelasticity and irreversible thermodynamics, Journal of Applied Physics, 27, 240, 1956, doi:10.1063/1.1722351.
  • 2. H.W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of Mechanics and Physics of Solids, 15, 299–309, 1967.
  • 3. A.E. Green, K.A. Lindsay, Thermoelasticity, Journal of Elasticity, 2, 1–7, 1972.
  • 4. C. Cattaneo, A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Comptes Rendus, 247, 431–433, 1958.
  • 5. P. Vernotte, Some possible complications in the phenomena of thermal conduction, Compte Rendus, 252, 2190–2191, 1961.
  • 6. A.E. Green, P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 432, 171–194, 1991.
  • 7. A.E. Green, P.M. Naghdi, On undamped heat waves in an elastic solid, Journal of Thermal Stresses, 15, 253–264, 1992.
  • 8. A.E. Green, P.M. Naghdi, Thermoelasticity without energy dissipation, Journal of Elasticity, 31, 189–208, 1993.
  • 9. D.Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales, Journal of Heat Transfer, 117, 8–16, 1995.
  • 10. D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature, Applied Mechanics Reviews, 51, 705–729, 1998.
  • 11. R. Tiwari, J.C. Misra, Magneto-thermoelastic excitation induced by a thermal shock: a study under the purview of three phase lag theory, Waves in Random and Complex Media, 2020, doi:10.1080/17455030.2020.1800861.
  • 12. R. Kumar, R. Tiwari, R. Kumar, Significance of memory-dependent derivative approach for the analysis of thermoelastic damping in micromechanical resonators, Mechanics of Time Dependent Materials, 2020, doi:10.1007/s11043-020-09477-7.
  • 13. R. Tiwari, S. Mukhopadhyay, On electromagneto-thermoelastic plane waves under Green–Naghdi theory of thermoelasticity-II, Journal of Thermal Stresses, 40, 1040–1062, 2017, doi:10.1080/01495739.2017.1307094.
  • 14. R. Tiwari, R. Kumar, A. Kumar, Investigation of thermal excitation induced by laser pulses and thermal shock in the half space medium with variable thermal conductivity, Waves in Random and Complex Media, 2020, doi:10.1080/17455030.2020.1851067.
  • 15. J.L. Wang, H.F. Li, Surpassing the fractional derivative: concept of the memorydependent derivative, Computers & Mathematics with Applications, 62, 1562–1567, 2011.
  • 16. A. Sur, Non-local memory-dependent heat conduction in a magneto-thermoelastic problem, Waves in Random and Complex Media, 2020, doi:10.1080/17455030.2020.1770369.
  • 17. A. Al-Jamel, M.F. Al-Jamal, A. El-Karamany, A memory-dependent derivative model for damping in oscillatory systems, Journal of Vibration Control, 24, 2221–2229, 2018.
  • 18. M. Du, Z. Wang, H. Hu, Measuring memory with the order of fractional derivative, Scientific Reports, 3, 1–3, 2013.
  • 19. E.-B.A.A. Ezzat, M.A. El-Karamany, Modeling of memory-dependent derivative In generalized thermoelasticity, European Physysical Journal Plus, 131, 372, 2016.
  • 20. M.A. Hendy, M.H., El-Attar, S. I. Ezzat, On thermoelectric materials with memorydependent derivative and subjected to a moving heat source, Microsystem Technologies, 26, 595–608, 2020, doi:10.1007/s00542-019-04519-8.
  • 21. S Mondal, M.I.A. Othman, Memory dependent derivative effect on generalized piezothermoelastic medium under three theories, Waves in Random and Complex Media, 31, 1–18, 2020.
  • 22. S. Mondal, A. Sur, M. Kanoria, A memory response in the vibration of a microscale beam induced by laser pulse, Journal of Thermal Stresses, 42, 1415–1431, 2019, doi:10.1080/01495739.2019.1629854.
  • 23. R. Tiwari, S. Mukhopadhyay, Analysis of wave propagation in the presence of a continuous line heat source under heat transfer with memory dependent derivatives, Mathematics and Mechanics of Solids, 23, 5, 820–834, 2017.
  • 24. M.I.A. Othman, S. Mondal, Memory-dependent derivative effect on 2D problem of generalized thermoelastic rotating medium with Lord–Shulman model, Indian Journal of Physics, 94, 1169–1181, 2020.
  • 25. Y.J. Yu, W. Hu, X.G. Tian, A novel generalized thermoelasticity model based on memory-dependent derivative, International Journal of Engineering, Science, 81, 123–134, 2014.
  • 26. Y.J. Yu, X.G. Tian, X.R. Liu, Size-dependent generalized thermoelasticity using Eringen’s nonlocal model, European Journal of Mechanics: A/Solids, 51, 96–106, 2015.
  • 27. N. Challamel, C. Grazide, V. Picandet, A. Perrot, Y. Zhang, A nonlocal Fourier’s law and its application to the heat conduction of one-dimensional and twodimensional thermal lattices, Comptes Rendus Mécanique, 344, 388–401, 2016.
  • 28. D.Y. Tzou, Z.Y. Guo, Nonlocal behavior in thermal lagging, International Journal of Thermal Sciences, 49, 1133–1137, 2010.
  • 29. M. Bachher, N. Sarkar, Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer, Waves in Random and Complex Media, 29, 595–613, 2019.
  • 30. M. Gupta, S. Mukhopadhyay, A study on generalized thermoelasticity theory based on non-local heat conduction model with dual-phase-lag, Journal of Thermal Stresses, 42, 1123–1135, 2019.
  • 31. A.E. Abouelregal, H. Ersoy, Ö. Civalek, Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole, Mathematics, 9, 1536, 2021.
  • 32. F. Ebrahimi, M. R. Barati, Ö. Civalek, Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures, Engineering with Computers, 36, 953–964, 2020.
  • 33. H.M. Numanoglu, B. Akgöz, Ö. Civalek, On dynamic analysis of nanorods, International Journal of Engineering Science, 130, 33–50, 2018.
  • 34. D.Y. Tzou, Macro- To Micro-Scale Heat Transfer: The Lagging Behavior, Taylor & Francis, Abingdon, UK, 1997.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4183a08e-d98b-468a-8552-aa05e8ac53dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.