Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We deal with the problem of existence and uniqueness of a solution for one-dimensional reflected backward stochastic differential equations with two strictly separated barriers when the generator has logarithmic growth |y| |ln |y|| + |z|√(|ln |z||) in the state variables y and z. The terminal value ξ and the obstacle processes (Lt)0≤t≤T and (Ut)0≤t≤T are Lp-integrable for a suitable p > 2. The main idea is to use the concept of local solution to construct a global one. As applications, we broaden the class of functions for which mixed zero-sum stochastic differential games admit an optimal strategy and the related double-obstacle partial differential equation problem has a unique viscosity solution.
Czasopismo
Rocznik
Tom
Strony
251--282
Opis fizyczny
Bobliogr. 20 poz.
Twórcy
autor
- Université Ibn Zohr, Équipe Aide à la Décision ENSA, B.P. 1136, Agadir, Maroc
autor
- Université Ibn Zohr, Équipe Aide à la Décision ENSA, B.P. 1136, Agadir, Maroc
autor
- Université Ibn Zohr, Équipe Aide à la Décision ENSA, B.P. 1136, Agadir, Maroc
Bibliografia
- [1] K. Bahlali and B. El Asri, Stochastic optimal control and BSDEs with logarithmic growth, Bull. Sci. Math. 136 (2012), 617-637.
- [2] K. Bahlali, O. Kebiri, N. Khelfallah and H. Moussaoui, One dimensional BSDEs with logarithmic growth application to PDEs, Stochastics 89 (2017), 1061-1081.
- [3] V. E. Beneš, Existence of optimal stochastic control laws, SIAM J. Control Optimization 8 (1971), 179-188.
- [4] J. Cvitanić and I. Karatzas, Backward stochastic differential equations with reflection and Dynkin games, Ann. of Probab. 4 (1996), 2024-2056.
- [5] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67.
- [6] C. Dellacherie et P. A. Meyer, Probabilités et Potentiel I-IV, Hermann, Paris, 1975.
- [7] B. Djehiche, S. Hamadène and A. Popier, A finite horizon optimal multiple switching problem, SIAM J. Control Optimization 48 (2009), 2751-2770.
- [8] B. El Asri, S. Hamadène and H. Wang, Lp-solutions for doubly reflected backward stochastic differential equations, Stochastic Anal. Appl 29 (2011), 907-932.
- [9] B. El Asri and K. Oufdil, Reflected BSDEs with logarithmic growth and applications in mixed stochastic control problems, Stochastics (online, 2022).
- [10] B. El Asri and S. Hamadène, The finite horizon optimal multi-modes switching problem: the viscosity solution approach, Appl. Math. Optimization 60 (2009), 213-235.
- [11] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE’s and related obstacle problems for PDE’s, Ann. Probab. 25 (1997), 702-737.
- [12] N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance 7 (1997), 1-71.
- [13] S. Hamadène, Mixed zero-sum stochastic differential game and American game options, SIAMJ. Control Optimization 45 (2006), 496-518.
- [14] S. Hamadène and M. Hassani, BSDEs with two reflecting barriers: the general result, Probab. Theory Related Fields 132 (2005), 237-264.
- [15] S. Hamadène and J.-P. Lepeltier, Reflected BSDEs and mixed game problem, Stochastic Process. Appl. 85 (2000), 177-188.
- [16] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Springer, New York, 1991.
- [17] J.-P. Lepeltier, A. Matoussi and M. Xu, Reflected backward stochastic differential equations under monotonicity and general increasing growth conditions, Adv. Appl. Probab. 37 (2005), 134-159.
- [18] E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990), 55-61.
- [19] S. Peng, Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob Meyers type, Probab. Theory Related Fields 113 (1999), 473-499.
- [20] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1991.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4181d10b-c651-44b5-8988-20db39ee06f9