PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The structure of a general materials genome approach to the design of new steel grades for specific properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Struktura ogólnego podejścia materiałowego do projektowania nowych gatunków stali o specjalnych własnościach
Języki publikacji
EN
Abstrakty
EN
In this work we review and reformulate a general alloy design methodology based on thermodynamic and kinetic principles, employing the genetic algorithm as the optimization scheme. The new approach relies on two key concepts: the ‘translator’ and the ‘creator’. The ‘translator’ is the conversion of the desired (thermo-)mechanical properties into required microstructures using known microstructure-property relationships. The ‘creator’ translates quantifiable microstructural parameters into metallurgical and economical parameters, i.e. composition, heat treatment parameter and cost, again employing established metallurgical principles. In the case of well defined ‘translator’ and ‘creator’ functions the model allows simultaneous, human intervention free optimization of alloy composition and key heat treatment parameters, i.e., austenitization temperatures and ageing temperatures, so as to fulfill multiple design criteria and eventually to achieve the desired microstructure. The elementary version of the model, not defining the ‘translator’ or ‘creator’ modules explicitly has applied to the design of ultra high strength (UHS) stainless steel and was validated by experiments on prototype alloys. The model was subsequently extended to take into account the alloying cost by adding a cost factor to various alloying elements, and is shown to provide valuable guidelines to the design and modification of alloy compositions and has the capacity to optimize strength and material cost in an integrated manner. In this manuscript the new conceptual approach to alloy design is reformulated in a more generic and abstract manner and new extensions of the model to the design of high temperature resistant steels (both creep steels and fire resistant steels) and abrasion resistant steels are discussed, and some preliminary results are shown.
PL
W pracy omówiono metodę projektowania stopów wykorzystującą zasady termodynamiki i kinetyki i stosując algorytmy genetyczne w procedurze optymalizacyjnej. Metoda polega na zastosowaniu dwóch głównych pojęć: translatora i kreatora. Translator jest zamianą wymaganych własności termomechanicznych na wymaganą mikrostrukturę, wykorzystując znane zależności między tymi parametrami. Kreator stosuje ustalone zasady metalurgiczne i zamienia ilościowe parametry mikrostruktury w parametry metalurgiczne i ekonomiczne, tzn. skład chemiczny, parametry obróbki cieplnej i koszty. W przypadku dobrze zdefiniowanych funkcji translatora i kreatora model pozwala na równoczesną optymalizację, z interwencją człowieka,dla składu chemicznego oraz dla parametrów obróbki cieplnej, tzn temperatury austenityzacji i temperatury starzenia. W ten sposób spełnione są różne kryteria projektowania i ostatecznie uzyskiwana jest wymagana mikrostruktura. Podstawowa wersja modelu, która nie definiuje modułów translatora i kreatora w sposób jawny, została zastosowana do projektowania stali nierdzewnych o podwyższonej wytrzymałości (ang. Ultra High Strength - UHS). Otrzymane wyniki zostały zweryfikowane doświadczalnie. Następnie model został rozszerzony i uwzględniono koszt dodatków stopowych poprzez wprowadzenie czynnika kosztów dla różnych pierwiastków stopowych. W ten sposób uzyskano cenne wskazówki dla projektowania i modyfikacji składu chemicznego i możliwość optymalizacji w sposób zintegrowany wytrzymałości materiału i kosztów jego wytwarzania. W niniejszej pracy to podejście zostało dalej uogólnione i stworzono nowe rozszerzenie modelu dla projektowania stali żaroodpornych, stali odpornych na pełzanie w wysokich temperaturach i stali odpornych na zużycie ścierne. Zamieszczone zostały wstępne wyniki uzyskane z nowej wersji modelu.
Wydawca
Rocznik
Strony
382--394
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • Novel Aerospace Materials group, Faculty of Aerospace Engineering, Delft University of Technology, 2628HS, Delft, The Netherlands
autor
  • Novel Aerospace Materials group, Faculty of Aerospace Engineering, Delft University of Technology, 2628HS, Delft, The Netherlands
autor
  • Novel Aerospace Materials group, Faculty of Aerospace Engineering, Delft University of Technology, 2628HS, Delft, The Netherlands
  • Novel Aerospace Materials group, Faculty of Aerospace Engineering, Delft University of Technology, 2628HS, Delft, The Netherlands
Bibliografia
  • Agren, J., 1994, Thermodynamics and heat treatment, Materials Science Forum, 163-6, 3-14.
  • Ågren J, Clavaguera-Mora MT, Golczewski J, Inden G, Kumar H, Sigli C., 2000, Applications of Computational Thermodynamics: Group 3: Application of computational thermodynamics to phase transformation nucleation and coarsening, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 24, 41-54.
  • Bhadeshia, H.K.D.H., 1999, Neural networks in materials science. ISIJ International, 39, 966-979.
  • Brahme, A., Winning, M., Raabe, D., 2009, Prediction of cold rolling texture of steels using an Artificial Neural Network, Computational Materials Science, 46, 800-804.
  • Robert W.C., Haasen P., 1996, Physical Metallurgy, Amsterdam, Elsevier, 2044-2046.
  • Campbell, C.E., Olson, G.B., 2000. Systems design of high performance stainless steels I. Conceptual and computational design, Journal of Computer-Aided Materials Design, 7, 145-170.
  • Guo, Z., Sha, W., 2004, Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network, Computational Materials Science, 29, 12-28.
  • Hao, S., Liu, W.K., Moran, B., Vernerey, F., Olson, G.B., 2004, Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels, Computer Methods in Applied Mechanics and Engineering, 193, 1865-1908.
  • He, Y., Yang, K., Sha, W., 2005, Microstructure and mechanical properties of a 2000 MPa grade Co-free maraging steel, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 36, 2273-2287.
  • Hodgson, P.D., Kong, L.X., Davies, C.H.J., 1999, The prediction of the hot strength in steels with an integrated phenomenological and artificial neural network model, Journal of Materials Processing Technology, 87, 131-138.
  • Ishida, K., 1995, Calculation of the effect of alloying elements on the Ms temperature in steels, Journal of Alloys and Compounds, 220, 126-131.
  • Jha, A.K., Prasad, B.K., Modi, O.P., Das, S., Yegneswaran, A.H., 2003, Wear, 254, 120-128.
  • Luo, K., Bai, B., 2010, Correlating microstructural features and mechanical properties with abrasion resistance of a high strength low alloy steel, Materials & Design, 31, 2510-2516.
  • Kelly A., 1958, The strength of aluminium silver alloys, Philosophical Magazine, 3, 1472-1474.
  • Klotz, U.E., Solenthaler, C., Uggowitzer, P.J., 2008, Martensitic-austenitic 9-12% Cr steels-Alloy design, microstructural stability and mechanical properties, Materials Science and Engineering A, 476, 186-194.
  • Lee, B.J., Kim, H.D., Hong, J.H., 1998, Calculation of equilibria in SA508 grade 3 steels for intercritical heat treatment, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 29, 1441-1447.
  • Michaud, P., Delagnes, D., Lamesle, P., Mathon, M.H., Levaillant, C., 2007, The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels, Acta Materialia, 55, 4877-4889.
  • National Science and Technology council, 2012, Materials Genome Initiative for Global Competitiveness, Washington D.C.
  • NRIM Creep Data Sheet, 2001, No. 28B. National Research Institute for Metals.
  • Olson, G.B., 1997, Computational design of hierarchically structured materials, Science, 277, 1237-1242.
  • Padilha, A.F., Rios, P.R., 2002, Decomposition of Austenite in Austenitic Stainless Steels, ISIJ International, 42, 325-337.
  • Raabe, D., Ponge, D., Dmitrieva, O., Sander, B., 2009, Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility, Scripta Materialia, 60, 1141-1144.
  • Sundstrom, A., Rendon, J., Olsson, M. 2001, Wear, 250, 744-754.
  • Servant, C., Gherbi, E.H., Cizeron, G., 1987, TEM investigation of the tempering behaviour of the maraging PH 17.4 Mo stainless steel, Journal of Materials Science, 22, 2297-2304.
  • Springer, H., Raabe, D., 2012, Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels, Acta Materialia, 60, 4950-4959.
  • Stiller, K., Hättestrand, M., Danoix, F., 1998, Precipitation in 9Ni-12Cr-2Cu maraging steels, Acta Materialia, 46, 6063-6073.
  • Trabadelo, V., Giménez, S., Gómez-Acebo, T., Iturriza, I., 2005, Critical assessment of computational thermodynamics in the alloy design of PM high speed steels, Scripta Materialia, 53, 287-292.
  • Vitos, L., Korzhavyi, P.A., Johansson, B., 2003, Stainless steel optimization from quantum mechanical calculations, Nature Materials, 2, 25-28.
  • Wang, J.A., Danninger, H. 2001, Factors influencing the wear behaviour of PM steels, Acta Metallurgical Sinica, 14, 33-41.
  • Wang, X.M., Li, P.Z., 2011, The Processing, Microstructure and Mechanical Properties of Low Alloy Wear Resistance Steels, Advanced Materials Research, 399-401, 259-263.
  • Würzinger, P., Rabitsch, R., Meyer, W., 2004, Production of maraging steel grades and the influence of specified and nonspecified elements for special applications, Journal of Materials Science, 39, 7295-7302.
  • Xu, W., Castillo, P.E.J.R.D.d., Zwaag, van der Zwaag., 2009a, A combined optimization of alloy composition and aging temperature in designing new UHS precipitation hardenable stainless steels, Computational Materials Science, 45, 467-473.
  • Xu, W., Rivera-Diaz-del-Castillo, P.E.J., van der Zwaag, S., 2008a, Designing nanoprecipitation strengthened UHS stainless steels combining genetic algorithms and thermodynamics, Computational Materials Science, 44, 678-689.
  • Xu, W., Rivera-Diaz-Del-Castillo, P.E.J., Van der Zwaag, S., 2008b, Genetic alloy design based on thermodynamics and kinetics, Philosophical Magazine, 88, 1825-1833.
  • Xu, W., Rivera-Diaz-Del-Castillo, P.E.J., Van der Zwaag, S., 2009b, Computational design of UHS maraging stainless steels incorporating composition as well as austenitisation and ageing temperatures as optimisation parameters, Philosophical Magazine, 89, 1647-1661.
  • Xu, W., Rivera-Diaz-del-Castillo, P.E.J., Wang, W., Yang, K., Bliznuk, V., Kestens, L.A.I., van der Zwaag, S., 2010a, Genetic design and characterization of novel ultra-highstrength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates, Acta Materialia, 58, 3582-3593.
  • Xu, W., Rivera-Díaz-del-Castillo, P.E.J., Yan, W., Yang, K., San Martín, D., Kestens, L.A.I., van der Zwaag, S., 2010b, A new ultrahigh-strength stainless steel strengthened by various coexisting nanoprecipitates, Acta Materialia, 58, 4067-4075.
  • Xu, W., van der Zwaag, S., 2011, Property and cost optimisation of novel UHS stainless steels via a genetic alloy design approach, ISIJ International, 51, 1005-1010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-417a3619-b8e6-4919-b469-9bf6b42979f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.