PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and properties of 1050A/AZ31 bimetallic bars produced by explosive cladding and subsequent groove rolling process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Within the framework of this study, the 1050A/AZ31 round bimetal bars were produced by the explosive cladding method and subsequent groove rolling process. LM/SEM investigation shown that by proper selection of the explosive cladding parameters (mainly initial distance between 1050A tube and AZ31 core and detonation velocity) it is possible to produce 1050A/AZ31 feedstocks without a continuous layer of Mg–Al intermetallic phases on the interface between joined materials. The experimental tests of the groove rolling process of 1050A/AZ31 bars were supplemented with a theoretical analysis using FEM-based numerical modelling. Based on the test results obtained, it was found that the interface of the 1050A/AZ31 bar rolling at a temperature (300 °C) was characterized by the generation of a thin continuous intermetallic layer without cracks. Applying a higher rolling temperature of 400 °C, which is usually used in hot forming processes of Mg alloys, led to the production of a thicker intermetallic layer, which cracked during the rolling process as a result of deformation. Strength of the fabricated bimetal joints was high, they did not delaminate during shear tests.
Rocznik
Strony
197--211
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
  • Czestochowa University of Technology, 69 Dąbrowskiego Street, 42‑201 Częstochowa, Poland
autor
  • Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25‑314 Kielce, Poland
autor
  • Czestochowa University of Technology, 69 Dąbrowskiego Street, 42‑201 Częstochowa, Poland
  • Czestochowa University of Technology, 69 Dąbrowskiego Street, 42‑201 Częstochowa, Poland
Bibliografia
  • [1] Pan F, Yang M, Chen X. A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. J Mater Sci Technol. 2016;32(12):1211–21.
  • [2] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;56:862–71.
  • [3] Mahendran G, Balasubramanian V, Senthilvelan T. Developing diffusion bonding windows for joining AZ31B magnesium-AA2024 aluminium alloys. Mater Des. 2009;30:1240–4.
  • [4] Zhu B, Liang W, Li X. Interfacial microstructure, bonding strength and fracture of magnesium-aluminium laminated composite plates fabricated by direct hot pressing. Mater Sci Eng A. 2011;528:6584–8.
  • [5] Zhang XP, Yang TH, Castagne S, Wang JT. Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling. Mater Sci Eng A. 2011;528:1954–60.
  • [6] Luo Ch, Liang W, Chen Z, Zhang J, Chi Ch, Yang F. Effect of high temperature annealing and subsequent hot rolling on microstructural evolution at the bond-interface of Al/Mg/Al alloy laminated composite. Mater Charact. 2013;84:34–40.
  • [7] Feuerhack B, Binotsch C, Wolff A, Awiszus B, Kittner K. A numerical criterion for quality prediction of bimetal strands. J Mater Process Technol. 2014;214:183–9.
  • [8] Golovko O, Bieliaiev SM, Nürnberger F, Danchenko VM. Extrusion of the bimetallic aluminium-magnesium rods and tubes. Forsch Ingenieurwes. 2015;79:17–27.
  • [9] Sato YS, Park SHC, Michiuchi M, Kokawa H. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Script Mater. 2004;50:1233–6.
  • [10] Liu L, Ren D, Liu F. A review of dissimilar welding techniques for magnesium alloys to aluminium alloys. Materials. 2014;7:3735–57.
  • [11] Emami SM, Divandari M, Arabi H, Hajjari E. Effect of melt-tosolid insert volume ratio on Mg/Al dissimilar metals bonding. J Mater Eng Perform. 2013;22(1):123–30.
  • [12] Mola R, Bucki T. The microstructure and properties of the bimetallic AZ91/AlSi17 joint produced by compound casting. Arch Foundry Eng. 2018;18(1):71–6.
  • [13] Ghaderi SH, Mori A, Hokamoto K. Analysis of explosively welded aluminium-AZ31 magnesium alloy joints. Mater Trans. 2008;49(5):1142–7.
  • [14] Fronczek DM, Chulist R, Litynska-Dobrzynska L, Kac S, Schell N, Kania Z, Szulc Z, Wojewoda-Budka J. Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing. Mater Des. 2017;130:120–30.
  • [15] Okamoto H. Al–Mg (aluminum–magnesium). J Phase Equilib. 1998;19:598.
  • [16] Mola R, Mroz S, Szota P. Effects of the process parameters on the formability of the intermetallic zone in two-layer Mg/Al materials. Arch Civ Mech Eng. 2018;18:1401–9.
  • [17] Xiao L, Wang N. Growth behavior of intermetallic compounds during reactive diffusion between aluminum alloy 1060 and magnesium at 573–673 K. J Nucl Mater. 2015;456:389–97.
  • [18] Mola R, Bucki T, Gwoździk M. The effect of a zinc interlayer on the microstructure and mechanical properties of a magnesium alloy (AZ31)-aluminum alloy (6060) joint produced by liquidsolid compound casting. JOM. 2019;71(6):2078–86.
  • [19] Liu N, Chen L, Fu Y, Zhang Y, Tan T, Yin F, Liang Ch. Interfacial characteristic of multi-pass caliber-rolled Mg/Al compound casting. J Mater Process Technol. 2019;267:196–204.
  • [20] Findik F. Recent developments in explosive welding. Mater Des. 2011;32:1081–93.
  • [21] Zhang LJ, Pei Q, Zhang JX, Bi ZY, Li PC. Study on the microstructure and mechanical properties of explosive welded 2205/X65 bimetal sheet. Mater Des. 2014;64:462–76.
  • [22] Zhang N, Wang W, Cao X, Wu J. The effect of annealing on the interface microstructure and mechanical characteristic of AZ31B/AA6061 composite plates fabricated by explosive welding. Mater Des. 2015;65:1100–9.
  • [23] Mróz S, Szota P, Stefanik A, Mola R (2018) Properties of joint region in the Mg/Al two-layer materials after explosive welding process. In: METAL 2018—27th international conference on metallurgy and materials, conference proceedings, Brno, Czech Republic, 23–25 May 2018, pp 1647–1653.
  • [24] Mroz S, Stradomski G, Dyja H, Galka A. Using the explosive cladding method for production of Mg–Al bimetallic bars. Arch Civ Mech Eng. 2015;15:317–23.
  • [25] Mróz S, Gontarz A, Drozdowski K, Bala H, Szota P. Forging of Mg/Al bimetallic handle using explosive welded feedstock. Arch Civ Mech Eng. 2018;18:401–12.
  • [26] Szota P, Mróz S, Gontarz A, Stefanik A. Theoretical and experimental analysis of mg/al bimetallic handle forging process. Arch Metall Mater. 2019;64(4):1503–12.
  • [27] Chen Z, Wang D, Cao X, Yang W, Wang W. Influence of multi-pass rolling and subsequent annealing on the interface microstructure and mechanical properties of the explosive welding Mg/Al composite plates. Mater Sci Eng A. 2018;723:97–108.
  • [28] Mróz S, Stefanik A, Szota P. Groove rolling process of Mg/Al bimetallic bars. Arch Metall Mater. 2019;64(3):1067–72.
  • [29] Mróz S, Szota P, Bajor T, Stefanik A. Theoretical and experimental analysis of formability of explosive welded Mg/Al bimetallic bars. Arch Metall Mater. 2017;62(2):501–7.
  • [30] Mróz S, Szota P, Stefanik A. FE and physical modelling of plastic flow the two-layer Mg/Al materials. Comput Methods Math Sci. 2017;17(3):148–55.
  • [31] Mroz S, Szota P, Bajor T, Stefanik A. Formability of explosive welded Mg/Al bi-metallic bar. Key Eng Mater. 2016;716:114–20.
  • [32] Paul H, Miszczyk MM, Chulist R, Prażmowski M, Morgiel J, Gałka A, Faryna M, Brisset F. Microstructure and phase constitution in the bonding zone of explosively welded tantalum and stainless steel sheets. Mater Des. 2018;153:177–89.
  • [33] Paul H, Chulist R, Miszczyk M, Litynska-Dobrzynska L, Cios G, Gałka A, Petrzak P, Szlezynger M. Towards a better understanding of the phase transformations in explosively welded copper to titanium sheets. Mater Sci Eng A. 2020;784:139285.
  • [34] Dyja H, Mróz S, Stradomski Z. Properties of joint in the bimetallic rods Cu–Al and Cu–steel after explosive cladding and the process of rolling. Metallurgy. 2003;42(3):185–91.
  • [35] Dziubinska A, Gontarz A, Zagórski I. Qualitative research on AZ31 magnesium alloy aircraft brackets with a triangular rib produced by a new forging method. Aircr Eng Aerosp Technol. 2018;90(3):482–8.
  • [36] Hensel A, Spittel T. Kraft und Arbeitsbedarf Bildsomer Formgeburgs. Lipsk: Verfahren, VEB Deutscher Verlang für Grundstoffindustrie; 1979.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4179de90-ff7a-4d37-916c-c041a118a64e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.