PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The tension-shear fracture behavior of polymeric bone cement modified with hydroxyapatite nano-particles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polymethylmethacrylate (PMMA)-based bone cement is a well-known polymer in the medicine, especially orthopedic. However it has some drawbacks like lack of enough biocompatibility and poor mechanical properties. These problems can be addressed by incorporation of nano-materials. Hydroxyapatite has been proved to enhance biocompatibility of acrylic bone cements. This bioceramic can affect the mechanical properties of polymeric cements as well. In this study, a number of fracture tests were carried out to investigate the influence of nano-hydroxyapatite (HA) on the fracture behavior of acrylic bone cement under combined tension-shear (mixed mode) loading conditions. Semi-circular specimens were prepared by incorporating different amounts of HA powder into the cement matrix. It was found that adding up to 10 wt% HA into the cement causes an increase in the fracture toughness of PMMA/HA nano-composite in all modes. However, pure cement exhibited the greatest fracture resistance among all samples. Moreover, the comparison between the experimental and theoretical results showed that the generalized maximum tangential stress criterion could estimate the experimental data satisfactorily.
Rocznik
Strony
50--59
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak 16846-13114, Tehran, Iran
  • Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak 16846-13114, Tehran, Iran
  • Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak 16846-13114, Tehran, Iran
Bibliografia
  • [1] H. Asgharzadeh Shirazi, S.A. Mirmohammadi, M. Shaali, A. Asnafi, M.R. Ayatollahi, A constitutive material model for a commercial PMMA bone cement using a combination of nano-indentation test and finite element analysis, Polymer Testing 59 (2017) 328–335.
  • [2] Y.W. Li, J.C. Leong, W.W. Lu, K.D. Luk, K.M. Cheung, K.Y. Chiu, S.P. Chow, A novel injectable bioactive bone cement for spinal surgery: a developmental and preclinical study, Journal of Biomedical Materials Research 52 (1) (2000) 167–170.
  • [3] H. Asgharzadeh Shirazi, M.R. Ayatollahi, B. Beigzadeh, Preparation and characterisation of hydroxyapatite derived from natural bovine bone and PMMA/BHA composite for biomedical applications, Materials Technology 31 (8) (2016) 448–453.
  • [4] A. Kazek-Kęsik, G. Dercz, I. Kalemba, J. Michalska, J. Piotrowski, W. Simka, Surface treatment of a Ti6Al7Nb alloy by plasma electrolytic oxidation in a TCP suspension, Archives of Civil and Mechanical Engineering 14 (4) (2014) 671–681.
  • [5] M. Jäger, A. Wilke, Comprehensive biocompatibility testing of a new PMMA-HA bone cement versus conventional PMMA cement in vitro, Journal of Biomaterials Science, Polymer Edition 14 (2003) 1283–1298.
  • [6] A.M. Moursi, A.V. Winnard, P.L. Winnard, J.J. Lannutti, R.R. Seghi, Enhanced osteoblast response to a polymethylmethacrylate– hydroxyapatite composite, Biomaterials 23 (1) (2002) 133–144.
  • [7] E. Łyczkowska, P. Szymczyk, B. Dybała, E. Chlebus, Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing, Archives of Civil and Mechanical Engineering 14 (4) (2014) 586–594.
  • [8] K. Serbetci, F. Korkusuz, N. Hasirchi, Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements, Polymer Testing 23 (2) (2004) 145–155.
  • [9] H.A. Shirazi, M.R. Ayatollahi, M.R. Naimi-Jamal, Influence of hydroxyapatite nano-particles on the mechanical and tribological properties of orthopedic cement-based nano-composites measured by nano-indentation and nano-scratch experiments, Journal of Materials Engineering and Performance 24 (9) (2015) 3300–3306.
  • [10] M.R. Ayatollahi, M.Y. Yahya, H.A. Shirazi, S.A. Hassan, Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler, Ceramics International 41 (9) (2015) 10818–10827.
  • [11] C.I. Vallo, P.E. Montemartini, M.A. Fanovich, J.M. Lopez, T.R. Cuadrado, Polymethylmethacrylate-based bone cement modified with hydroxyapatite, Journal of Biomedical Materials Research 48 (2) (1999) 150–158.
  • [12] J. Perek, R.M. Pilliar, Fracture toughness of composite acrylic bone cements, Journal of Materials Science: Materials in Medicine 3 (5) (1992) 333–344.
  • [13] L. Morejón, A.E. Mendizábal, J.A. García-Menocal, M.P. Ginebra, C. Aparicio, F.J. Mur, M. Marsal, N. Davidenko, M.E. Ballesteros, J.A. Planell, Static mechanical properties of hydroxyapatite (HA) powder-filled acrylic bone cements: effect of type of HA powder, Journal of Biomedical Materials Research Part B: Applied Biomaterials 72 (2) (2005) 345–352.
  • [14] W.T. George, D. Vashishth, Susceptibility of aging human bone to mixed-mode fracture increases bone fragility, Bone 38 (1) (2006) 105–111.
  • [15] M.D. Ries, L.A. Rauscher, S. Hoskins, D. Lott, J.A. Richman, F. Lynch, Intramedullary pressure and pulmonary function during total knee arthroplasty, Clinical Orthopaedics and Related Research 356 (1998) 154–160.
  • [16] R. John, S.P. Shah, Mixed-mode fracture of concrete subjected to impact loading, Journal of Structural Engineering 116 (3) (1990) 585–602.
  • [17] J.R. Klepaczko, M.N. Bassim, T.R. Hsu, Fracture toughness of coal under quasi-static and impact loading, Engineering Fracture Mechanics 19 (2) (1984) 305–316.
  • [18] P.R. Marur, R.C. Batra, G. Garcia, A.C. Loos, Static and dynamic fracture toughness of epoxy/alumina composite with submicron inclusions, Journal of Materials Science 39 (4) (2004) 1437–1440.
  • [19] M.R. Ayatollahi, M.R. Aliha, Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading, Computational Materials Science 38 (4) (2007) 660– 670.
  • [20] M.R. Aliha, M.R. Ayatollahi, On mixed-mode I/II crack growth in dental resin materials, Scripta Materialia 59 (2) (2008) 258– 261.
  • [21] M.R. Ayatollahi, M.R. Aliha, M.M. Hassani, Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens, Materials Science and Engineering: A 417 (1) (2006) 348–356.
  • [22] D.J. Smith, M.R. Ayatollahi, M.J. Pavier, The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading, Fatigue & Fracture of Engineering Materials & Structures 24 (2) (2001) 137–150.
  • [23] M.R. Ayatollahi, M.R. Aliha, On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials, Engineering Fracture Mechanics 75 (16) (2008) 4631–4641.
  • [24] C. Wang, Z.M. Zhu, H.J. Liu, On the I–II mixed mode fracture of granite using four-point bend specimen, Fatigue & Fracture of Engineering Materials & Structures (2016).
  • [25] M.R. Ayatollahi, M.R. Aliha, H. Saghafi, An improved semi- circular bend specimen for investigating mixed mode brittle fracture, Engineering Fracture Mechanics 78 (1) (2011) 110–123.
  • [26] N.A. Al-Shayea, Crack propagation trajectories for rocks under mixed mode I–II fracture, Engineering Geology 81 (1) (2005) 84–97.
  • [27] W.L. Tham, W.S. Chow, Z.M. Ishak, Flexural and morphological properties of poly (methyl methacrylate)/ hydroxyapatite composites: effects of planetary ball mill grinding time, Journal of Reinforced Plastics and Composites 29 (13) (2010) 2065–2075.
  • [28] S.M. Zebarjad, S.A. Sajjadi, T. Ebrahimi, A. Yaghmaei, B. Naderi, A study on mechanical properties of PMMA/ hydroxyapatite nanocomposite, Engineering 3 (2011) 795–801.
  • [29] B.B. Johnsen, A.J. Kinloch, R.D. Mohammed, A.C. Taylor, S. Sprenger, Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer 48 (2) (2007) 530–541.
  • [30] S. Deng, L. Ye, K. Friedrich, Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temperatures, Journal of Materials Science 42 (8) (2007) 2766–2774.
  • [31] S. Chandrasekaran, C. Seidel, K. Schulte, Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties, European Polymer Journal 49 (12) (2013) 3878–3888.
  • [32] P. Rosso, L. Ye, K. Friedrich, S. Sprenger, A toughened epoxy resin by silica nanoparticle reinforcement, Journal of Applied Polymer Science 100 (3) (2006) 1849–1855.
  • [33] S. Zhao, L.S. Schadler, R. Duncan, H. Hillborg, T. Auletta, Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy, Composites Science and Technology 68 (14) (2008) 2965–2975.
  • [34] M. Shariati, G.A. Farzi, A. Dadrasi, M. Amiri, R. Rashidi Meybodi, An experimental study on toughening mechanisms of fillers in epoxy/silica nanocomposites, International Journal of Nanoscience and Nanotechnology 11 (3) (2015) 193–199.
  • [35] M. Shahedi Asl, M.G. Kakroudi, R.A. Kondolaji, H. Nasiri, Influence of graphite nano-flakes on densification and mechanical properties of hot-pressed ZrB2–SiC composite, Ceramics International 41 (4) (2015) 5843–5851.
  • [36] M.R. Ayatollahi, S. Shadlou, M.M. Shokrieh, Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites, Engineering Fracture Mechanics 78 (14) (2011) 2620–2632.
  • [37] S. Sathees Kumar, G. Kanagaraj, Investigation of characterization and mechanical performances of Al2, Journal of Inorganic and Organometallic Polymers and Materials 26 (4) (2016) 788–798.
  • [38] H. Shahrajabian, S.Y. Ahmadi-Brooghani, S.J. Ahmadi, Characterization of mechanical and thermal properties of vinyl-ester/TiO2 nanocomposites exposured to electron beam, Journal of Inorganic and Organometallic Polymers and Materials 23 (6) (2013) 1282–1288.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4177219e-1585-434a-8a9a-ee3d35ba6f8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.