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Abstract

A convenient new tool for solving the problem ofiability and availability evaluation and optimizan of
complex technical systems is presented. Linkingraisnarkov modeling of the system operation proggss
with a multi-state approach to system reliabilitydaavailability analysis is proposed to constrie joint
general model of reliability and availability of mplex technical systems in variable operation cious. This
joint model and a linear programming is proposeatdmplex technical systems reliability and avaliapi
evaluation and optimization respectively.

1. Introduction 2. Modeling system operation process

Most real technical systems are very complex and iWWe assume that the system during its operation
is difficult to analyze their reliability and avability. process is taking, v O N, different operation states.
Large numbers of components and subsystems andyrther, we define the system operation process
their operating complexity cause that the evalmatio z(t) t[O<0+c0> with discrete operation states

and optimization of their reliability and availabjlis _
complicated. The complexity of the systems’ from the set of stateZ ={z,,z,,...,z, JMoreover,

operation processes and their influence on changin}j/® @ssume that the system operation proZ¢ss

in time the systems’ structures and their compaient Semi-markov [2] with the conditional sojourn times
reliability characteristics is often very difficuip fix 6, atthe operation stateg when its next operation
gnd to analyze. Usua]ly the system.enV|ronn_1e'nt'anq,tate is z, bl=12..v, b#zl. Under these
infrastructure have either an explicit or an impplic
strong influence on the system operation process. A

a rule some of the initiating environment eventd an of the system operation proce&®) initial aperation
infrastructure conditions define a set of different y p P P

operation states of the technical system. AStates[p,(O), . the matrix of probabilities of the
convenient tool for solving this problem is a semi- System operation proceg§) transitions between the
markov modeling of the system operation processeoperation states[p,],, and the matrix of
linked with a multi-state approach for the systemconditional distribution functions of the system
reliability and availability analysis and a linear operation procesz(t) conditional sojourn times,
programming fpr 'the system  reliability and in the operation statefH , (t)],,, or equivalently by
availability optimization. . Y " .
the matrix of corresponding conditional density
functions[h, (t)],,, -

assumptions, the system operation process may be
described by [1], [2], [6] the vector of probabdi
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From the formula for total probability it follow$at
the unconditional distribution functions of the

sojourn times 6, b=12..yv, of the system
operation procesZ(t) at the operation statez, |,
b=12,...,v, are given by [6]

Hy(®) = 2 Py Hy 1), b=12...v. (1)
Hence, the mean valuEgs, of]the unconditional
sojourn timesg, ,b=12,...,v, are given by

M, =E[6] = EpthbI ,b=12..yv, (2)
where M, are defined by the formula
M.y, = E[6,]= [tdH,, () = fth, (Odt, 3
0

bl =12,..,v,bZl.

The limit values of the transient probabilitigg t &t)
the particular operation states are given by &], [

M
p, = o p=12..y,

3 (4)
27T M,
=1
where M, , b=12,...,v, are given by (2), while the
stationary probabilitiesz, of the vector[7,],,,
satisfy the system of equations

[7]=[7]p,]
v ) (5
Z_jln, =1

3. Reliability, risk and availability of multi-
state systems in variable operation conditions

while they were in the staieat the moment =
0,
T(u) is a random variable representing the
lifetime of a system in the state subset
{uu+l,...Z} while it was in the state at the
momentt = 0,
— the system state degrades with timavithout
repair,
— g(t) is a componenE; state at the momert
t < 0,0), given that it was in the stateat the

momentt = 0,
— 5(t) is a system state at the momertt< 0, ),

given that it was in the stageat the moment =

0.
The above assumptions mean that the states of the
system with degrading components may be changed
in time only from better to worse [3]-[5].
Under these assumptions, a vector

R(t,l) = [R(t,O)R(t,1),...R(t,2)], t O (-0, 00),
i=1,2,..n,

where

R(t,u) =P(e(t) = u|e(0) =2 =P(T(u) >1),
t 0 (-o0,), u=0,1,..7

is the probability that the compondhtis in the state
subset{u,u+1,...,Z2 at the moment, t[< 0,»),
while it was in the state at the moment = 0, is
called the multi-state reliability function of a
componeng;.

Similarly, a vector

Ra(t,l) = [Ra(t,0), Ry(t,1),...,Rn(t,2)], t O (-0, ),
where

Rq(t,u) =P(s(t) = u | s(0) =2) = P(T(u) >1),
tO (-0,0),u=0,1,...7,

(6)

In the multi-state reliability analysis to define is the probability that the system is in the state
systems with degrading (ageing) components Wesubset{u,u+l...,z} at the moment, t < 0, ),

assume that:

— nis the number of system components,

- E,i=1,2,..n, are components of a system,

— all components and a system
consideration have the state set {0,1},..2>1,

under

while it was in the state at the moment = 0, is
called the multi-state reliability function of astgm.

A probability

— the state indexes are ordered, the state O is ther(t) = P(s(t) <r | (0) =2) = P(T(r) <),

worst and the stateis the best,

- Ti(u, i=12,..n are independent random
variables representing the lifetimes
componentds; in the state subseuju+l,...z,

of

t [0 (—oo, ),

that the system is in the subset of states worse th
the critical stater, r [{1,...,zZ} while it was in the
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statez at the moment = 0 is called a risk function of
the multi-state system or, in short, a risk [1], [3

Under this definition, from (6), we have

r(t) = 1- P(s(t) = r|s(0) =2) = 1- R(t,r),
t 0 (—o0,00).

()

and if 7 is the moment when the risk exceeds a

permitted leveb, then

—

r=r

(9), (8)

wherer (1) , if it exists, is the inverse function of
the risk functiorr(t).

T®(u) in the state subsdu,u+1,...,2 is greater
thant, while the procesZ(t) is at the operation state
z,. In the case when the system operation t#nes

large enough, the unconditional reliability funetio
of the system

R, ) =[1 R, €D..... R (t,2)], (9)

where

R, (t,u) =P(T(u) >t), for t0<0,0),
u=12,...,z,

and T (u) is the unconditional lifetime of the system
in the system reliability state subsets is given by

Further, we assume that the changes of the process

Z(t) states have an influence on the system multi-

state componentsk reliability and the system

reliability structure as well. Thus, we denote the
conditional reliability function of the system miult
state componentE while the system is at the

operational state, , b =12,...,v, by [7]-[ 11]

[R(t,D1”=[1, [RED]I,...[R (2],
i=12,...,n,

where fort 0< 0,»), u=12,..,z, b=12,...,v,

[R W™ =PT® ) >t|z(t) = z,)

and the conditional reliability function of the $gm
while the system is at the operational stag
b=12...v, by

[R.(t1” =1, [R,tD]?, ... [R, (t. 211,

where fort U< 0,), u=12,...,z, b=212,....,v.
[R, & u)]® =P(T® (u) >4Z(t) = z,),

and T®(u) is the system conditional lifetime at the
operational statez,, dependent on the components
conditional lifetimes at the operational staie

The reliability function[R (t,u)]® is the conditional
probability that the componerg, lifetime T,* (u)

in the state subsdtu,u+1,...,7Z} is greater than,
while the proces<(t) is at the operation statg.
Similarly, the reliability function[R_ (t,u)]” is the
conditional probability that the system lifetime
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R, (t,u) O3 p,[R, (t.u)]* for t20, (10)

u=12,...,z,

and the mean value of the system unconditional
lifetime in the system reliability state subsets is

H(U) O P, (), U=12,...2, (M
where
(W =R, € w]®dt, u=12,...2, (12)

and p, are given by (4) and the variance of the

system unconditional lifetime in the system
reliability state subsets is
o?(u) =2t R, (t,u)dt - [(u)]?, (13)
0

u=12,...,z

Additionally, according to (3.19) [1], we get the
following formulae for mean values of the
unconditional lifetime of the system in particular
reliability states

HUW=pu)—uu+l), u=01...,z-1,

H(2) = u(2). (14)
The main characteristics of multi-state renewal
system with ignored time of renovation related to
their operation process can be approximately
determined by using results of the research rdfprt
formulated in the form of the following theorem.
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Theorem 3.1 determined by using results of the research rdfprt

If components of the multi-state renewal systentwit formulated in the form of the following theorem.

ignored time of renovation at the operational state Theorem 3.2

have exponential reliability functions and the syst  If components of the multi-state renewal systenhwit

reliability critical state isr, r 0{12,...,2}, then: non-ignored time of renovation at the operational
states have exponential reliability functions, the

i) the distribution of the timeS, (r Juntil the Nth system reliability critical state ig, r J{12,...,7},

exceeding of reliability critical stateof this system, and the successive times of system'’s renovatiaas ar
for sufficiently largeN, has approximately normal independent and have an identical distribution
distribution N(Nu(r),v/Na(r)), i.e., function with the expected valug/, (r and the

varianceo’(r), then:
t- N/J(f)) _
JNo@r) " i) the distribution function of the timeS, (r) until

t O (=00, ), r0{12,...,2}, the Nth system'’s renovation, for sufficiently larde
has approximately normal distribution

FM(t,r) = P(S, (r) <t) OF oy (

ii) the expected value and the variance of the time
S, (r) until theNth exceeding the reliability critical ~ N(N(x(r) + Lo (D) N(@2(r) +T2(r))) e,
stater of this system take respectively forms

= (N) -
E[S\ ()] = Nu(r), D[S, (r)]=N[a(r)]*, F o (tr)=P(Sn(r)<t)

rd{12,...,2,

o, (NGO 400

iii) the distribution of the numberN(t,r) of TN () + a2 () ’

exceeding the reliability critical stateof this system tO(—o0,0), N=12,..., r0{12,...,7,

up to the moment, t = 0, for sufficiently larget, is

approximately of the form ii) the expected value and the variance of the time
§N(r) until the Nth system’s renovation take

P(N(t,r) =N) respectively forms

N(r) - ty (N+1)ﬂ(f) ty

OFy gy (— =) = Fy oy C— = EISw (1] ON((r) + 12, (1))
«M a(r) U) _

N = 012,.. Jmuz D[Sn (1] ON(a*(r) +2(r)), r 0{1.2,...,2,

iv) the expected value and the variance of thelii) the distribution function of the timeS,, (r) until
number N(t,r) of exceeding the reliability critical theNthexceeding the reliability critical stateof this

stater of this system at the momentt =0, for  System takes form
sufficiently larget, approximately take respectively ) i
forms F o (tr)=P(Sn(r)<t)

E= NQu(r) + 4, () + 14, (r)

IN@? () + a2 () - o2(r)
t 0 (—c0,0), N=12,..., r0{12,...,2,

t t
H(t,r)=——, D(t,r)= 2
R R P73 R OF o (

rd{12,...,z,

where andu(r) and o(r) are given by (11)-(13) for _ _
u=r. |v) the expected value and the variance of the time

system with non-ignored time of renovation reIatedStater of this system take respectively forms
to their operation process can be approximately
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viii) the expected value and the variance of the
number N(t,r) of exceeding the reliability critical
stater of this system up to the momentt = 0, for

E[Sn (0] ONg(r) + (N =D, (r),

D[Sx ()] ONg*(r) + (N -Do;(r), r 0{12,...,2, sufficiently larget, are approximately respectively
_ given by
v) the distribution of the numbeN (t,r) of system’s H t,r) O t+ 44, (r)
renovations up to the momentt > 0, is of the form ST () + ()
N ~ t+ 44,(r) 2 2
P(N(t,r)=N) O D(t,r) O————"—(o’(r)+o,°(r)),
(U(r) + 4, (r))°
N(a(r) + (1) -t o223,
FN(O,l)( i )
\/(az(r)+aj(r)) ix) the availability coefficient of the system dtet
H(r) + 1 (r) momentt is given by the formula
pu(r)
Atr)d—————, t=20,r0{1,2,...,72,
r NGO )t T OEPAG) 23
N N GO R TA D)
4(r) + 1, (r) ° X) the availability coefficient of the system ineth
time interval <t,t+7),7>0, is given by the

N=12..,r0{12...7, formula

vi) the expected value and the variance of the

s 1 o
number N(t,r) of system’s renovations up to the A(t,7,r)0 [R,(tr)dt t=0, 7>0,

H(r) + o (r) «

momentt, t = 0, take respectively forms r0{12,...7}
Ij|(t,r) D;, where R, (t,r) is given by the formula (10) and
H(T) + 4y (r) H(r)and g(r) are given by (11)-(13) fou =r.
B(t,r) D%(az(r) +0,%(r)), 4. Optimization of a system operation process
(u(r) + 1, (r))
ri{12,...,z, 4.1. Optimal transient probabilities

maximizing system lifetime

vii) the distribution of the numberN(t,r) of  cqngidering the equation (10), it is natural touass

exceeding the rellablllty critical stateof this system  that the system Operation process has a Signiﬁcant

up to the moment, t = 0, is of the form influence on the system reliability. This influenise
also clearly expressed in the equation (11) for the
mean values of the system unconditional lifetintes i

P(N(t.r)=N) O the reliability state subsets.
From linear equation (11), we can see that the mean
Fuon N(u(r) + 4, (1) =t = 44, (r) ) value of the system unconditional lifetimg(u),
' \/ t+ 14,(r) (02(r) + 02(r)) u=12,...,z is determined by the limit transient
M)+, (r) ° probabilites p,, b=1212...,v, of the system

operation states given by (4) and the mean values
Hy(u), b=12,...v, u=12,...,z of the system
conditional lifetimes in the reliability state s@bs

(N+1)(,u(r)+,Uo(r))—t—,uo(r)), {uu+1...2, u=12..z given by (3.6).

- FN (01 (

w(az(r).kaz(r)) . . .. .
u(r) + 41, (r) 0 Therefore, the system lifetime optimization apptoac
a ° based on the linear programming can be proposed.
N=12.., r0{12..3, Namely, we may look for the corresponding optimal
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values p, ,b=12,...,v, of the transient probabilities the limit transient probabilitiep, b=12,...,v, that
p,,» b=12,..,v, in the system operation states to maximize the objective function (15). First, we
maximize the mean valug(u) of the unconditional &'range the system conditional lifetime mean values
system lifetimes in the reliability state subsets m®(r), b=12,...v, in non-increasing order
{uu+1,...,z, u=12,..,z under the assumption

that the mean values (U ,) b=12..V, Ho (1) 2 f, (1) 2. 2 i (1),

u=12,..,z of the system conditional lifetimes in whereb, 0{12,..v }fori=12..v.

the reliability state subsets are fixed. As a sgeci Next, we substitute

case of the above formulate system lifetime

optimization problem, ifr, r =12,...,z, is a system X =Py X =Py, X =P, for i=12,..,v (19)
critical reliability state, then we want to findeth

optimal values p, ,b=12..v, of the transient and we maximize with respect o i,=12..V,
probabilites p, , b=12..v, in the system the linear form (15) that after this transformation
operation states to maximize the mean valge) of  takes the form

the unconditional system lifetimes in the relidlili

state subse{r,r +1,,...,2, r =12,...,z, under the #(r):izi:lXi/Jbi (r) (20)
assumption that the mean valuegy (r , ) )

b=12..v, r=12..,z of the system conditional fo 3 fixed r 0{12,...,z4 with the following bound
lifetimes in this reliability state subset are fixe .gnsiraints

More exactly, we formulate the optimization
problem as a linear programming model with the

objective function of the following linear form X =1 (21)
p(r):bi_lpbyb(r) (15) X <x <X,i=12..V, (22)

for a fixed r 0{12,...7 and with the following WNere

bound constraints fy (), 14 ()20, 1=12,..,
Elpb =1 (16)  are fixed mean values of the system conditional

lifetimes in the reliability state subsét,r +1,...,2

P,<pP, <P, b=12,.., (17) arranged in non-increasing order and

where )?i,OS)?iSland)?i,OS)?iSl )v(iS)A(i, (23)

i=12,...,V,

My (r), #,(r)=20, b=122,...v,
are lower and upper bounds of the unknown limit

are fixed mean values of the system conditionaltransient probabilities;, i = 12,...,v, respectively.
lifetimes in the reliability state subsét,r +1,...,2} We define
and
) . . . o X=yx, y=1-X (24)
P, 0sp,slandp,,0<p, <1 p,<p,,(18) =
b=12,...v,
and

are lower and upper bounds of the unknown transient | |
probabilities p,, b = 1.2,...,v, respectively. X°=0, x°=0 andx' =Y x, x' =Yyx  (25)
Now, we can obtain the optimal solution of the g, =12...
formulated by (15)-(18) the linear programming

problem, i.e. we can find the optimal valugg of
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Next, we find the largest valueD{01,....v} such  where j(u) is given by (32) andR_(t,u), according

that to (9)-(10), is the coordinate of the corresponding
optimal unconditional multistate reliability funoti
x'-x'<y (26)  of the system
and we fix the optimal solution that maximize (20) R, t)=[1 R, D, ... R, (2] (34)
the following way:
given by
i) if 1 =0, the optimal solution is
X =y+x andx =x fori=23,...; (27) Rn (t,u) DZVL B[R, (t,u)]® for t=0, (35)
b=1
ii) if 0<1 <v, the optimal solution is u=12...z
. - L L T and by (14) the optimal solutions for the mean &alu
X EXIOrT =121, Xy ZY =X X 4Ky of the system unconditional lifetimes in the partc
reliability states are of the form
and
x =% fori=l+21+3..v; gy HUWZAW-Au+D u=0L..2-1
iii) if 1 =V, the optimal solution is H(2) = (). (36)
% =% fori=12,..v. (29) Moreover, considering (7) and (8), the correspogdin

optimal system risk function and the moment when

the risk exceeds a permitted levelrespectively are
Finally, after making the inverse to (19) subsiitnf P vlresp y

iven b
we get the optimal limit transient probabilities ¢ y
p, =X for i=12..v, (30) (O=1-R,n). th{me. ), 37)
- L : and
that maximize the system mean lifetime given by the
linear form (15) giving its optimal value in the = (3) (38)

following form

wherer *(t ), if it exists, is the inverse function of

the risk functionr (t).

Finally, replacingu(r) by a(r) and o(r) by o(r)

for a fixedr L{12,...,2} . in the expressions for the renewal systems
From the above, replacing by u, u=12,...,z, we  characteristics pointed in Theorem 1 and Theorem 2,

obtain the corresponding optimal solutions for thewe get their corresponding optimal values.
mean values of the system unconditional lifetinmes i

the reliability state subsefs,u +1,...,7} ofthe form 4.2, Optimal sojourn times in operation states
maximizing system lifetime

() =épb/‘lb(u) for u=12,..,z (32)  Replacing in (4) limit transient probabilitie, in

operational states by their optimal valugs found

and by (13) the correqunding_ va]ues qf the vaganc in the previous section and the mean valis of
of the system unconditional lifetimes in the systemine unconditional sojourn times in operational extat

reliability state subsets is by their corresponding unknown optimal valués,
we get the system of equations

f(r) = 2 Pyt (1) (3D)

o (U) = 2]t R, (t,u)dt-[ 4w, (33)
u=12,...z, b= Mo poao v (39)
S M,
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After simple transformations the above system takes systems related to their operation process§®

the form 4 — Task 4.1 — English — 31.05.2008. Poland-
Singapore Joint Project. MSHE Decision No.
(p, =DM, + pL,M, +...+ p,M, =0 63/N-Singapore/2007/0.

[2] Grabski, F. (2002).Semi-Markov Models of
Systems Reliability and Operations. Monograph
Analysis.Monograph System Research Institute,
Polish Academy of Sciencan(Polish), Warsaw.

[3] Kotowrocki, K. (2004). Reliability of Large

: _ . _ SystemsElsevier, ISBN: 0080444296.
p,7LM,; +p, M, +..+(p, -Dm,M, =0, (40) [4] Kotowrocki, K. (2007). Reliability modelling of
complex systems — Part Ihternational Journal
where M, are unknown variables we want to find, =~ 0f Gnedenko e-Forum *“Reliability: Theory &

; : - : i Application”, Vol. 2, No 3-4, 116-127.
p, are optimal limit transient probabilities ..\ L ‘K. (2007). Reliability modelling of

determined Dby (30) andz, are probabilities complex systems — Part Bternational Journal
determined by (2). of Gnedenko e-Forum “Reliability: Theory &
Since the above system is homogeneous then it has Application”, Vol. 2, No 3-4, 128-139.

nonzero solutions when the determinant of thgs] Kotowrocki, K. & Soszyiska, J. (2008).A
system equations main matrix is equal to zerojfi.e. general model of technical systems operation
its rank is less tharv. Moreover, in this case the processes related to their environment and
solutions are ambiguous. Anyway, if we fix the infrastructure WP 2 — Task 2.1 — English —

p277:-l.lv.ll+(p2 _1)7T2M2 Tt DZITVMV =O

optimal valuesl\)lb of the mean valuedM, of the 31.05.2008. Poland-Singapore Joint Project.
unconditional sojourn times in operational stafes, MSHE Decision No. 63/N-Singapore/2007/0.
instance by arbitrary fixing one or a few of them,[7] Kotowrocki, K., Soszjiska, J., Baranowski, Z. &
then it is also possible to look for the optimalues Golik, P. (2008). Preliminary modeling,

M. of the mean valuesM. of the conditional statistical identification and evaluation of
sojb(laurn e operatioblnal states using the rel.iability, risk, a}vailabilit_y and safety_ of port,
following system of equations shlpyard_ and ship t_echnlcal systems in constant
and variable operation conditiondVP4 - Task
. 4.2. Preliminary reliability, risk and availability
> prMbI = I\)Ib, b=12...v, (42) analysis and evaluation of a port oil transportatio
= system in constant and variable operation
_ _ . conditions. WP4 - Sub-Task 4.2.1 — English —
obtained from (2) by replacinyl, by M, and M,, 30.11.2008. Poland-Singapore Joint Project.
by M,, were p, are known probabilities of the MSHE Decision No. 63/N-Singapore/2007/0.

system operation process transitions between i@l Limnios, N. & Oprisan, G. (2001fFemi-Markov

operation states. Processes and Reliabilitigirkhauser, Boston.
[9] Ross, S. M. (2007)Introduction to Probability
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