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1. Introduction 

Most real technical systems are very complex and it 
is difficult to analyze their reliability and availability. 
Large numbers of components and subsystems and 
their operating complexity cause that the evaluation 
and optimization of their reliability and availability is 
complicated. The complexity of the systems’ 
operation processes and their influence on changing 
in time the systems’ structures and their components’ 
reliability characteristics is often very difficult to fix 
and to analyze. Usually the system environment and 
infrastructure have either an explicit or an implicit 
strong influence on the system operation process. As 
a rule some of the initiating environment events and 
infrastructure conditions define a set of different 
operation states of the technical system. A 
convenient tool for solving this problem is a semi-
markov modeling of the system operation processes 
linked with a multi-state approach for the system 
reliability and availability analysis and a linear 
programming for the system reliability and 
availability optimization.   
 
 

2. Modeling system operation process 

We assume that the system during its operation 
process is taking ,, Nv ∈ν  different operation states. 
Further, we define the system operation process 

)(tZ , ,,0 >+∞∈<t  with discrete operation states 

from the set of states }..,..,,{ 21 νzzzZ =  Moreover, 
we assume that the system operation process Z(t) is 
semi-markov [2] with the conditional sojourn times 

blθ  at the operation states bz  when its next operation 

state is ,lz  ,,...,2,1, vlb =  .lb ≠  Under these 

assumptions, the system operation process may be 
described by [1], [2], [6] the vector of probabilities 
of the system operation process Z(t) initial operation 
states νx1)]0([ bp , the matrix of probabilities of the 
system operation process Z(t) transitions between the 
operation states ννx][ blp  and the matrix of 
conditional distribution functions of the system 
operation process Z(t) conditional sojourn times blθ  

in the operation states ννx)]([ tH bl or equivalently by 
the matrix of corresponding conditional density 
functions .)]([ ννxthbl   
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From the formula for total probability it follows that 
the unconditional distribution functions of the 
sojourn times ,bθ ,,...,2,1 vb =  of the system 

operation process )(tZ  at the operation states ,bz  
,,...,2,1 vb =  are given by [6]  

 

   )(tHb  = ∑
=

v

l
blbl tHp

1
),(  .,...,2,1 vb =                       (1) 

 
Hence, the mean values ][ bE θ of the unconditional 

sojourn times ,bθ  ,,...,2,1 vb =  are given by   
 

   ][ bb EM θ=  = ∑
=

v

l
blbl Mp

1
, ,,...,2,1 vb =                 (2) 

 
where blM  are defined by the formula  
 

   ][ blbl EM θ= ∫ ∫==
∞ ∞

0

,)()( dttthttdH blbl
                 (3)      

   ,,...,2,1, vlb = .lb ≠                                                    
  
The limit values of the transient probabilities )(tpb at 
the particular operation states are given by [2], [6]   
 

   bp  = ,

1
∑
=

v

l
ll

bb

M

M

π

π
 ,,...,2,1 vb =                                 (4) 

 
where ,bM  ,,...,2,1 vb =  are given by (2), while the 

stationary probabilities bπ  of the vector νπ xb 1][  
satisfy the system of equations   
 

   







∑ =

=

=

v

l
l

blbb p

1
.1

]][[][

π

ππ
                                                 (5) 

 
3. Reliability, risk and availability of multi-
state systems in variable operation conditions 

In the multi-state reliability analysis to define 
systems with degrading (ageing) components we 
assume that: 
– n is the number of system components, 
– Ei, i = 1,2,...,n, are components of a system, 
– all components and a system under 

consideration have the state set {0,1,...,z}, ,1≥z  
– the state indexes are ordered, the state 0 is the 

worst and the state z is the best,  
– Ti(u),  i = 1,2,...,n,  are independent random 

variables representing the lifetimes of 
components Ei in the state subset {u,u+1,...,z}, 

while they were in the state z at the  moment t = 
0,   

– T(u) is a random variable representing the 
lifetime of a system in the state subset  
{ u,u+1,...,z} while it was in the state z at the 
moment t = 0, 

– the system state degrades with time t without 
repair, 

– ei(t) is a component Ei state at the moment t, 
),,0 ∞∈<t  given that it was in the state z  at the 

moment t = 0,   
– s(t) is a system state at the moment t, ),,0 ∞∈<t  

given that it was in the state z at the moment t = 
0.  

The above assumptions mean that the states of the 
system with degrading components may be changed 
in time only from better to worse [3]-[5]. 
Under these assumptions, a vector   
      
  Ri(t ⋅, ) = [Ri(t,0),Ri(t,1),...,Ri(t,z)], ),,( ∞−∞∈t  
   i = 1,2,...,n,                                                        
 
where   
 
   Ri(t,u) = P(ei(t) ≥ u | ei(0) = z) = P(Ti(u) > t),     
   ),,( ∞−∞∈t  u = 0,1,...,z,                                     

 
is the probability that the component Ei is in the state 
subset },...,1,{ zuu +  at the moment t, ),,0 ∞∈<t  
while it was in the state z at the moment t = 0, is 
called the multi-state reliability function of a 
component Ei.  
Similarly, a vector     
 
   Rn(t ⋅, ) = [Rn(t,0), Rn(t,1),..., Rn(t,z)], ),,( ∞−∞∈t                                                                      
 
where   
 
   Rn(t,u) = P(s(t) ≥ u | s(0) = z) = P(T(u) > t),         (6) 
   t ∈ (-∞,∞), u = 0,1,...,z,                                              
 
is the probability  that the system is in the state 
subset },...,1,{ zuu +  at the moment t, ),,0 ∞∈<t  
while it was in the state z at the moment t = 0, is 
called the multi-state reliability function of a system.  
 
A probability  
 
   r(t) = P(s(t) < r | s(0) = z) = P(T(r) ≤ t),  
   ),,( ∞−∞∈t  
 
that the system is in the subset of states worse than 
the critical state r, r ∈{1,...,z} while it was in the 
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state z at the moment t = 0 is called a risk function of 
the multi-state system or, in short, a risk [1], [3].  
 
Under this definition, from (6), we have     
 
   r(t) = −1  P(s(t) ≥ r|s(0) = z) = −1  Rn(t,r),           (7) 
  ).,( ∞−∞∈t                                                                 
 
and if τ is the moment when the risk exceeds a 
permitted level δ, then   
 
   =τ r ),(1 δ−                                                            (8) 
 

where r )(1 t− , if it exists, is the inverse function of 
the risk function r(t).  

Further, we assume that the changes of the process 
Z(t) states have an influence on the system multi-
state components iE  reliability and the system 
reliability structure as well. Thus, we denote the 
conditional reliability function of the system multi-
state component iE  while the system is at the 

operational state ,bz ,,...,2,1 vb =  by [7]-[ 11] 
 

   
)()],([ b

i tR ⋅ = [1, ,)]1,([ )(b
i tR ..., )()],([ b

i ztR ], 
   ,,...,2,1 ni =  
 
where for ),,0 ∞∈<t  ,,...,2,1 zu = ,,...,2,1 vb =   
 

   
))()(()],([ )()(

b
b

i
b

i ztZtuTPutR =>=   

 
and the conditional reliability function of the system 
while the system is at the operational state ,bz  

,,...,2,1 vb =  by  
 

   
)()],([ bt ⋅nR = [1, ,)]1,([ )(btnR ..., ])],([ )(bztnR , 

 
where for ),,0 ∞∈<t  ,,...,2,1 zu = .,...,2,1 ν=b   
 

   
)()],([ butnR ),)()(( )(

b
b ztZtuTP =>=   

 

and )()( uT b

 
is the system conditional lifetime at the 

operational state ,bz  dependent on the components 

conditional lifetimes at the operational state bz . 

The reliability function )()],([ b
i utR  is the conditional 

probability that the component iE  lifetime )()( uT b
i  

in the state subset },...,1,{ zuu +  is greater than t, 

while the process Z(t) is at the operation statebz . 

Similarly, the reliability function )()],([ butnR   is the 
conditional probability that the system lifetime 

)()( uT b  in the state subset },...,1,{ zuu +  is greater 

than t, while the process Z(t) is at the operation state 
.bz  In the case when the system operation time θ  is 

large enough, the unconditional reliability function 
of the system  
 

   
),( ⋅tnR  = [1, ),1,(tnR ..., ),( ztnR ],                      (9) 

 
where  
 

   
),( utnR ),)(( tuTP >=  for ),,0 ∞∈<t  

   ,,...,2,1 zu =  
 
and )(uT  is the unconditional lifetime of the system 
in the system reliability state subsets is given by  
 

   ),( utnR )(

1
]),([ b

v

b
nb utp∑≅

=
R  for 0≥t ,               (10) 

   ,,...,2,1 zu =                                                                                                                                 
 
and the mean value of the system unconditional 
lifetime in the system reliability state subsets is   
 

   
,)()(

1
∑≅
=

ν
µµ

b
bb upu  ,,...,2,1 zu =                         (11)                                            

 
where  
 

   
∫=
∞

0

)( ,)],([)( dtutu b
nb Rµ

 
,,...,2,1 zu =
               

(12) 

 
and bp  are given by (4) and the variance of the 
system unconditional lifetime in the system 
reliability state subsets is 
 

   ∫=
∞

0

2 2)( tuσ ,)]([),( 2udtutn µ−R                       (13) 

   .,...,2,1 zu =                                                              
 
Additionally, according to (3.19) [1], we get the 
following formulae for mean values of the 
unconditional lifetime of the system in particular 
reliability states  
 
   ),1()()( +−= uuu µµµ  ,1,...,1,0 −= zu   
 
   ).()( zz µµ =                                                        (14) 
 
The main characteristics of multi-state renewal 
system with ignored time of renovation related to 
their operation process can be approximately 
determined by using results of the research report [1] 
formulated in the form of the following theorem.  
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Theorem 3.1  
If components of the multi-state renewal system with 
ignored time of renovation at the operational states 
have exponential reliability functions and the system 
reliability critical state is ,r },,...,2,1{ zr ∈  then: 
 
i) the distribution of the time )(rSN  until the Nth 
exceeding of reliability critical state r of this system, 
for sufficiently large N, has approximately normal 

distribution ))(),(( rNrNN σµ , i.e., 
 

   =),()( rtF N ),
)(

)(
())(( )1,0(

rN

rNt
FtrSP NN σ

µ−≅<  

   ),,( ∞−∞∈t  },,...,2,1{ zr ∈  
 
ii) the expected value and the variance of the time 

)(rSN  until the Nth exceeding the reliability critical 
state r of this system take respectively forms 
 
   ),()]([ rNrSE N µ=  2)]([)]([ rNrSD N σ= , 
   },,...,2,1{ zr ∈  
 
iii) the distribution of the number ),( rtN  of 
exceeding the reliability critical state r of this system 
up to the moment ,0, ≥tt  for sufficiently large t, is 
approximately of the form 
 
   )),(( NrtNP =  
 

   )

)(
)(

)(
()1,0(

r

t
r

trN
FN

µ
σ

µ −≅ ),

)(
)(

)()1(
()1,0(

r

t
r

trN
FN

µ
σ

µ −+−   

   ,...2,1,0=N , },,...,2,1{ zr ∈  
 
iv) the expected value and the variance of the 
number ),( rtN  of exceeding the reliability critical 
state r of this system at the moment ,0, ≥tt  for 
sufficiently large t, approximately take respectively 
forms  
 

   ,
)(

),(
r

t
rtH

µ
=  ,)]([

)]([
),( 2

3
r

r

t
rtD σ

µ
=  

   },,...,2,1{ zr ∈  
 
where and )(rµ and )(rσ are given by (11)-(13) for 

.ru =  
The main characteristics of multi-state renewal 
system with non-ignored time of renovation related 
to their operation process can be approximately 

determined by using results of the research report [1] 
formulated in the form of the following theorem.  
Theorem 3.2 
If components of the multi-state renewal system with 
non-ignored time of renovation at the operational 
states have exponential reliability functions, the 
system reliability critical state is ,r },,...,2,1{ zr ∈  
and the successive times of system’s renovations are 
independent and have an identical distribution 
function with the expected value )(roµ  and the 

variance ),(2 roσ  then:  
 

i) the distribution function of the time )(rSN  until 
the Nth system’s renovation, for sufficiently large N, 
has approximately normal distribution  
 

   )))()(()),()((( 22 rrNrrNN oo σσµµ ++ , i.e., 

 

   =
=

),(
)(

rtF
N

))(( trSP N <
=

 
 

                   ),
))()((

))()((
(

22
)1,0(

rrN

rrNt
F

o

o
N

σσ
µµ

+

+−
≅      

   ),,( ∞−∞∈t ,...2,1=N , },,...,2,1{ zr ∈  
 
ii) the expected value and the variance of the time 

)(rSN  until the Nth system’s renovation take 
respectively forms 
 

   ))()(()]([ rrNrSE oN µµ +≅
=

,  
 

   ))()(()]([ 22 rrNrSD oN σσ +≅
=

, },,...,2,1{ zr ∈  
 
iii) the distribution function of the time )(rSN  until 
the Nth exceeding the reliability critical state r of this 
system takes form 
 

   =
−

),(
)(

rtF
N

))(( trSP N <
−

 
 

   ),
)())()((

)())()((
(

222
)1,0(

rrrN

rrrNt
F

oo

oo
N

σσσ
µµµ

−+

++−
≅     

   ),,( ∞−∞∈t  ,...2,1=N , },,...,2,1{ zr ∈                                                      
 
iv) the expected value and the variance of the time 

)(rSN  until the Nth exceeding the reliability critical 
state r of this system take respectively forms 
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   )()1()()]([ rNrNrSE oN µµ −+≅
−

,    
 

  )()1()()]([ 22 rNrNrSD oN σσ −+≅
−

, },,...,2,1{ zr ∈   
 

v) the distribution of the number ),( rtN  of system’s 
renovations up to the moment ,0, ≥tt  is of the form       
 

   ≅=
=

)),(( NrtNP  
 

   )

))()((
)()(

))()((
(

22

0

)1,0(

rr
rr

t

trrN
F

o

o
N

σσ
µµ

µµ

+
+
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   ),
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(
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0
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trrN
F

o

o
N

σσ
µµ

µµ

+
+

−++
−      

   ,...2,1=N , },,...,2,1{ zr ∈  
 
vi) the expected value and the variance of the 

number ),( rtN  of system’s renovations up to the 
moment ,0, ≥tt  take respectively forms 
 

   
)()(

),(
rr

t
rtH

oµµ +
≅

=

,  

 

   )),()((
))()((

),( 22

3
rr

rr

t
rtD o

o

σσ
µµ

+
+

≅
=

    

   },,...,2,1{ zr ∈  
 
vii) the distribution of the number ),( rtN  of 
exceeding the reliability critical state r of this system 
up to the moment ,0, ≥tt  is of the form 
 

   ≅=
−

)),(( NrtNP  
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)())()((
(
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0
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)1,0(
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o
N

σσ
µµ
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+
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rtrrN
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o

o
N

σσ
µµ

µ
µµµ

+
+

+
−−++

−      

   ,...2,1=N , },,...,2,1{ zr ∈  
 

viii) the expected value and the variance of the 
number ),( rtN  of exceeding the reliability critical 
state r of this system up to the moment ,0, ≥tt  for 
sufficiently large t, are approximately respectively 
given by 

   
)()(

)(
),( 0

rr

rt
rtH

oµµ
µ
+

+
≅

−

,  

 

   )),()((
))()((

)(
),( 22

3
0 rr

rr

rt
rtD o

o

σσ
µµ

µ
+

+
+

≅
−

    

   },,...,2,1{ zr ∈  
 
ix) the availability coefficient of the system at the 
moment t is given by the formula 
 

   
)()(

)(
),(

rr

r
rtA

oµµ
µ
+

≅ , ,0≥t },,...,2,1{ zr ∈  

 
x) the availability coefficient of the system in the 
time interval ,0),, >+< ττtt  is given by the 
formula 
 

   ,),(
)()(

1
),,( ∫+

≅
∞

τµµ
τ dtrt

rr
rtA n

o

R ,0≥t ,0>τ     

  },,...,2,1{ zr ∈  
 
 where ),( rtnR  is given by the formula (10) and 

)(rµ and )(rσ are given by (11)-(13) for .ru =  
 
4. Optimization of a system operation process  
 
4.1. Optimal transient probabilities 
maximizing system lifetime 

Considering the equation (10), it is natural to assume 
that the system operation process has a significant 
influence on the system reliability. This influence is 
also clearly expressed in the equation (11) for the 
mean values of the system unconditional lifetimes in 
the reliability state subsets.   
From linear equation (11), we can see that the mean 
value of the system unconditional lifetime )(uµ , 

,,...,2,1 zu =  is determined by the limit transient 
probabilities ,bp  ,,...,2,1 ν=b  of the system 
operation states given by (4) and the mean values 

)(ubµ , ,,...,2,1 ν=b  ,,...,2,1 zu =  of the system 
conditional lifetimes in the reliability state subsets 

},,...,1,{ zuu + ,,...,2,1 zu =  given by (3.6). 
Therefore, the system lifetime optimization approach 
based on the linear programming can be proposed. 
Namely, we may look for the corresponding optimal 
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values ,bpɺ  ,,...,2,1 ν=b  of the transient probabilities 

,bp  ,,...,2,1 ν=b  in the system operation states to 
maximize the mean value )(uµ  of the unconditional 
system lifetimes in the reliability state subsets 

},,...,1,{ zuu + ,,...,2,1 zu =  under the assumption 

that the mean values )(ubµ , ,,...,2,1 ν=b  
,,...,2,1 zu =  of the system conditional lifetimes in 

the reliability state subsets are fixed. As a special 
case of the above formulate system lifetime 
optimization problem,  if ,r  ,,...,2,1 zr =  is a system 
critical reliability state, then we want to find the 
optimal values ,bpɺ  ,,...,2,1 ν=b  of the transient 

probabilities ,bp  ,,...,2,1 ν=b  in the system 
operation states to maximize the mean value )(rµ  of 
the unconditional system lifetimes in the reliability 
state subset },,...,,1,{ zrr + ,,...,2,1 zr =  under the 

assumption that the mean values )(rbµ , 
,,...,2,1 ν=b  ,,...,2,1 zr =  of the system conditional 

lifetimes in this reliability state subset are fixed. 
More exactly, we formulate the optimization 
problem as a linear programming model with the 
objective function of the following linear form  
 

   ∑=
=

ν
µµ

1
)()(

b
bb rpr                                               (15) 

 
for a fixed },...,2,1{ zr ∈  and with the following 
bound constraints 
 

    ∑ =
=

ν

1
,1

b
bp                                                            (16) 

 
   ,bbb ppp

⌢⌣ ≤≤  ,,...,2,1 ν=b                               (17) 
 
where 
 
   )(rbµ , ,0)( ≥rbµ  ,,...,2,1 ν=b  
 
are fixed mean values of the system conditional 
lifetimes in the reliability state subset },...,1,{ zrr +  
and  
 
   ,bp
⌣

 10 ≤≤ bp
⌣

 and ,bp
⌢

 ,10 ≤≤ bp
⌢

 ,bb pp
⌢⌣ ≤ (18)     

   ,,...,2,1 ν=b                                                              
 
are lower and upper bounds of the unknown transient 
probabilities bp , ,,...,2,1 ν=b  respectively.  
Now, we can obtain the optimal solution of the 
formulated by (15)-(18) the linear programming 
problem, i.e. we can find the optimal values bpɺ  of 

the limit transient probabilities ,bp  ,,...,2,1 ν=b  that 
maximize the objective function (15). First, we 
arrange the system conditional lifetime mean values 

),()( rm b  ,,...,2,1 ν=b  in non-increasing order  
 
   ≥)(

1
rbµ ≥)(

2
rbµ . . . ),(rbν

µ≥   

where },...,2,1{ ν∈ib  for .,...,2,1 ν=i  
Next,  we substitute  
 
  

ibi px = , 
ibi px
⌣⌣ = , 

ibi px
⌢⌢ =  for  ν,...,2,1=i      (19) 

 
and we maximize with respect to ,ix  ,,...,2,1 ν=i  
the linear form (15) that after this transformation 
takes the form  
 

   ∑=
=

ν
µµ

1
)()(

i
ibi rxr                                               (20) 

 
for a fixed },...,2,1{ zr ∈  with the following bound 
constraints 
 

    ∑ =
=

ν

1
,1

i
ix                                                             (21) 

 
   ,iii xxx

⌢⌣ ≤≤ ,,...,2,1 ν=i                                   (22) 
 
where 
 
   ),(r

ibµ  ,0)( ≥r
ibµ  ,,...,2,1 ν=i  

 
are fixed mean values of the system conditional 
lifetimes in the reliability state subset },...,1,{ zrr +  
arranged in non-increasing order and  
 
   ,ix
⌣

 10 ≤≤ ix
⌣

 and ,ix
⌢

 ,10 ≤≤ ix
⌢

 ,ii xx
⌢⌣ ≤        (23) 

   ,,...,2,1 ν=i                                                              
 
are lower and upper bounds of the unknown limit 
transient probabilities ix , ,,...,2,1 ν=i  respectively.  
We define  
 

   ∑=
=

ν

1
,

i
ixx
⌣⌣

 xy
⌣−= 1ˆ                                            (24) 

 
and 
 

   ,00 =x
⌣

 00 =x
⌢

  and ∑=
=

I

i
i

I xx
1

,
⌣⌣

 ∑=
=

I

i
i

I xx
1

⌢⌢
      (25) 

   for .,...,2,1 ν=I                                                        
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Next, we find the largest value },...,1,0{ ν∈I  such 
that  
 
   yxx II ˆ<− ⌣⌢

                                                       (26) 
 
and we fix the optimal solution that maximize (20) in 
the following way:  
 
i) if ,0=I  the optimal solution is  
   11

ˆ xyx
⌣

ɺ +=  and ii xx
⌣

ɺ =  for ;,...,3,2 ν=i           (27) 
 
ii) if ,0 ν<< I  the optimal solution is  
 
   ii xx

⌢
ɺ = for ,,...,2,1 Ii = 11

ˆ ++ ++−= I
II

I xxxyx
⌣⌣⌢

ɺ   
 
and  
 
   ii xx

⌣
ɺ =  for ;,...,3,2 ν++= IIi                         (28) 

 
iii) if ,ν=I  the optimal solution is  
 
   ii xx

⌢
ɺ =  for .,...,2,1 ν=i                                      (29) 

 
Finally, after making the inverse to (19) substitution, 
we get the optimal limit transient probabilities  
 
   iib xp ɺɺ =  for  ,,...,2,1 ν=i                                   (30) 

 
that maximize the system mean lifetime given by the 
linear form (15) giving its optimal value in the 
following form 
 

   ∑=
=

ν
µµ

1
)()(

b
bb rpr ɺɺ                                               (31) 

 
for a fixed },...,2,1{ zr ∈ .  
From the above, replacing r  by ,u ,,...,2,1 zu =  we 
obtain the corresponding optimal solutions for the 
mean values of the system unconditional lifetimes in 
the reliability state subsets },...,1,{ zuu +  of the form  
 

   ∑=
=

ν
µµ

1
)()(

b
bb upu ɺɺ  for  ,,...,2,1 zu =                 (32) 

 
and by (13) the corresponding values of the variances 
of the system unconditional lifetimes in the system 
reliability state subsets is 
 

   ∫=
∞

0

2 2)( tuσɺ ,)]([),( 2udtutn µɺɺ −R                       (33) 

   ,,...,2,1 zu =                                                              
 

where )(uµɺ  is given by (32) and ),,( utnRɺ  according 
to (9)-(10), is the coordinate of the corresponding 
optimal unconditional multistate reliability function 
of the system   
 

   
),( ⋅tnRɺ  = [1, ),1,(tnRɺ ..., ),( ztnRɺ ],                    (34) 

 
given by  
 

   ),( utnRɺ )(

1
]),([ b

v

b
nb utp∑≅

=
Rɺ  for 0≥t ,               (35) 

   ,,...,2,1 zu =                                                              
 
and by (14) the optimal solutions for the mean values 
of the system unconditional lifetimes in the particular 
reliability states are of the form  
 
   ),1()()( +−= uuu µµµ ɺɺɺ  ,1,...,1,0 −= zu   
 
   ).()( zz µµ ɺɺ =                                                       (36) 
 
Moreover, considering (7) and (8), the corresponding 
optimal system risk function and the moment when 
the risk exceeds a permitted level δ, respectively are 
given by  
 
   )(trɺ = 1 - ),,( rtnRɺ  ),,( ∞−∞∈t                          (37) 
 
and    
 
   =τɺ ),(δ-1rɺ                                                          (38) 
 
where ),(t-1rɺ  if it exists, is the inverse function of 
the risk function ).(trɺ   

Finally, replacing )(rµ  by )(rµɺ  and )(rσ  by )(rσɺ  
in the expressions for the renewal systems 
characteristics pointed in Theorem 1 and Theorem 2,  
we get their corresponding optimal values. 
  
4.2. Optimal sojourn times in operation states 
maximizing system lifetime 

Replacing in (4) limit transient probabilities bp  in 

operational states by their optimal values bpɺ  found 

in the previous section and the mean values bM  of 
the unconditional sojourn times in operational states 
by their corresponding unknown optimal values bMɺ  
we get the system of equations   
 

   bpɺ  = ,

1
∑
=

v

l
ll

bb

M

M

ɺ

ɺ

π

π
 .,...,2,1 vb =                                (39) 
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After simple transformations the above system takes 
the form  
 
   0...)1( 1221111 =+++− ννπππ MpMpMp ɺɺɺɺɺɺ  
 
   0...)1( 2222112 =++−+ ννπππ MpMpMp ɺɺɺɺɺɺ  
   .                                                                                                                                                                      
   .                                                                                                                                                               
   . 
   ,0)1(...2211 =−+++ ννννν πππ MpMpMp ɺɺɺɺɺɺ     (40)                          
 
where bMɺ  are unknown variables we want to find, 

bpɺ  are optimal limit transient probabilities 

determined by (30) and bπ  are probabilities 
determined by (2).  
Since the above system is homogeneous then it has 
nonzero solutions when the determinant of the 
system equations main matrix is equal to zero, i.e. if 
its rank is less than .ν  Moreover, in this case the 
solutions are ambiguous. Anyway, if we fix the 
optimal values bMɺ  of the mean values bM  of the 
unconditional sojourn times in operational states, for 
instance by arbitrary fixing one or a few of them, 
then it is also possible to look for the optimal values 

blMɺ  of the mean values blM  of the conditional 
sojourn times in operational states using the 
following system of equations  
 

   ,
1

b

v

l
blbl MMp ɺɺ =∑

=
 ,,...,2,1 vb =                              (41) 

 
obtained from (2) by replacing bM  by bMɺ  and blM  

by ,blMɺ  were blp  are known probabilities of the 
system operation process transitions between the 
operation states.  
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