Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of the present paper is to develop the classical potential method in the linear theory of thermoelasticity for materials with a double porosity structure based on the mechanics of materials with voids. The fundamental solution of the system of equations of steady vibrations is constructed explicitly by means of elementary functions and its basic properties are established. The Sommerfeld-Kupradze type radiation conditions are established. The basic internal and external boundary value problems (BVPs) are formulated and the uniqueness theorems of these problems are proved. The basic properties of the surface (single-layer and double-layer) and volume potentials are established and finally, the existence theorems for regular (classical) solutions of the internal and external BVPs of steady vibrations are proved by using the potential method and the theory of singular integral equations.
Czasopismo
Rocznik
Tom
Strony
347--370
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- Institute for Fundamental and Interdisciplinary Mathematics Research Ilia State University K. Cholokashvili Ave., 3/5 0162 Tbilisi, Georgia
Bibliografia
- 1. B. Straughan, Waves and uniqueness in multi-porosity elasticity, J. Therm. Stress., 39, 704–721, 2016.
- 2. B. Straughan, Modelling questions in multi-porosity elasticity, Meccanica, 51, 2957–2966, 2016.
- 3. T. Miao, S. Cheng, A. Chen, B. Yu, Analysis of axial thermal conductivity of dual-porosity fractal porous media with random fractures, Int. J. Heat Mass Transfer, 102, 884–890, 2016.
- 4. M.A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155–164, 1941.
- 5. G.I. Barenblatt, I.P. Zheltov, I.N. Kochina, Basic concept in the theory of seepage of homogeneous liquids in fissured rocks (strata), J. Appl. Math. Mech., 24, 1286–1303, 1960.
- 6. J. Warren, P. Root, The behavior of naturally fractured reservoirs, Soc. Petrol. Eng. J., 3, 245–255, 1963.
- 7. R.K. Wilson, E.C. Aifantis, On the theory of consolidation with double porosity, I, Int. J. Engng. Sci., 20, 1009–1035, 1982.
- 8. R. Gelet, B. Loret, N. Khalili, Borehole stability analysis in a thermoporoelastic dual-porosity medium, Int. J. Rock Mech. Mining Sci., 50, 65–76, 2012.
- 9. N. Khalili, A.P.S. Selvadurai, A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity, Geophys. Res. Letters, 30, 2268, 2003.
- 10. N. Khalili, M.A. Habte, S. Zargarbashi, A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hysteresis, Comput. Geotech., 35, 872–889, 2008.
- 11. S.R. Pride, J.G. Berryman, Linear dynamics of double-porosity dual-permeability materials I. Governing equations and acoustic attenuation, Phys. Rev. E, 68, 036603, 2003.
- 12. E. Rohan, S. Naili, R. Cimrman, T. Lemaire, Multiscale modeling of a fluid saturated medium with double porosity: Relevance to the compact bone, J. Mech. Phys. Solids, 60, 857–881, 2012.
- 13. Y. Zhao, M. Chen, Fully coupled dual-porosity model for anisotropic formations, Int. J. Rock Mech. Mining Sci., 43, 1128–1133, 2006.
- 14. M. Ciarletta, F. Passarella, M. Svanadze, Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity, J. Elasticity, 114, 55–68, 2014.
- 15. M. Gentile, B. Straughan, Acceleration waves in nonlinear double porosity elasticity, Int. J. Engng. Sci., 73, 10–16, 2013.
- 16. E. Scarpetta, M. Svanadze, V. Zampoli, Fundamental solutions in the theory of thermoelasticity for solids with double porosity, J. Thermal Stres., 37, 727–748, 2014.
- 17. M. Svanadze, Uniqueness theorems in the theory of thermoelasticity for solids with double porosity, Meccanica, 49, 2099–2108, 2014.
- 18. M. Svanadze, S. De Cicco, Fundamental solutions in the full coupled linear theory of elasticity for solid with double porosity, Arch. Mechanics, 65, 367–390, 2013.
- 19. M. Svanadze, External boundary value problems of steady vibrations in the theory of rigid bodies with a double porosity structure, Proc. Appl. Math. Mech., 15, Issue 1, 365–366, 2015.
- 20. M.M. Svanadze, Plane waves and problems of steady vibrations in the theory of viscoelasticity for Kelvin–Voigt materials with double porosity, Arch. Mechanics, 68, 441–458, 2016.
- 21. M. Bai, D. Elsworth, J.C. Roegiers, Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs, Water Resources Research, 29, 1621–1633, 1993.
- 22. K.N. Moutsopoulos, A.A. Konstantinidis, I. Meladiotis, Ch.D. Tzimopoulos, E.C. Aifantis, Hydraulic behavior and contaminant transport in multiple porosity media, Trans. Porous Media, 42, 265–292, 2001.
- 23. J.W. Nunziato, S.C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rat. Mech. Anal., 72, 175–201, 1979.
- 24. S.C. Cowin, J.W. Nunziato, Linear elastic materials with voids, J. Elast., 13, 125–147, 1983.
- 25. D. Iesan, R. Quintanilla, On a theory of thermoelastic materials with a double porosity structure, J. Thermal Stres., 37, 1017–1036, 2014.
- 26. D. Iesan, Method of potentials in elastostatics of solids with double porosity, Int. J. Engng. Sci., 88, 118–127, 2015.
- 27. M. Svanadze, Plane waves, uniqueness theorems and existence of eigenfrequencies in the theory of rigid bodies with a double porosity structure, [in:] Albers, B., Kuczma, M. [Eds.], Continuous Media with Microstructure 2, Springer Int. Publ. Switzerland, 287–306, 2016.
- 28. R. Kumar, R. Vohra, M.G. Gorla, State space approach to boundary value problem for thermoelastic material with double porosity, Appl. Math. Comp., 271, 1038–1052, 2015.
- 29. R. Kumar, R. Vohra, M.G. Gorla, Some considerations of fundamental solution in micropolar thermoelastic materials with double porosity, Arch. Mechanics, 68, 263–284, 2016.
- 30. W. Nowacki, Dynamic Problems of Thermoelasticity, PWN-Noordhoff, 1975.
- 31. V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili, T.V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Amsterdam, New York, Oxford, North-Holland, 1979.
- 32. I.N. Vekua, On metaharmonic functions, Proc. Tbilisi Math. Inst. Academy Sci. Georgian SSR., 12, 105–174, 1943 (in Russian); English transl.: Lecture Notes of TICMI, 14, 1–62, 2013.
- 33. C.M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rat. Mech. Anal., 29, 241–271, 1968.
- 34. S.G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, Oxford, 1965.
- 35. V.D. Kupradze, Potential Methods in the Theory of Elasticity, Jerusalem, Israel Program Sci. Transl., 1965.
- 36. T.V. Burchuladze, T.G. Gegelia, The Development of the Potential Methods in the Elasticity Theory, Metsniereba, Tbilisi, 1985.
- 37. T. Gegelia, L. Jentsch, Potential methods in continuum mechanics, Georgian Math. J., 1, 599–640, 1994.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4173a5c6-a273-44b0-9583-4ff1173b277e