PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovative Tool for Friction Stir Welding of Titanium Plates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study was to analyze the level of wear of the tool made of sintered tungsten heavy sinter used for friction stir welding (FSW) of titanium alloys. The study includes an analysis of the microstructure of the tool, measurements of surface roughness, friction tests using 100Cr6 ball bearing and friction tests using a tungsten carbide WC. Based on the analysis of the presented results, it can be stated that the test material – pulled together with the titanium – will be characterized by high resistance to wear.
Słowa kluczowe
Rocznik
Strony
53--63
Opis fizyczny
Bibliogr. 13 poz., il., tab., wykr.
Twórcy
autor
  • Military University of Technology, Faculty of Mechanical Engineering
autor
  • Military University of Technology, Faculty of Mechanical Engineering
autor
  • Military University of Technology, Faculty of Mechanical Engineering
autor
  • Warsaw University of Technology, Faculty of Production Engineering
autor
  • Military University of Technology, Faculty of Mechanical Engineering
Bibliografia
  • 1. Bellini, L. and Giumelli, R. (1986). Welding of titanium clad components. Welding International, 1(2):155–160.
  • 2. Buffa, G., Fratini, L., Micari, F., and Settineri, L. (2012). On the choice of tool material in friction stir welding of titanium alloys.
  • 3. Dawes, C, J. and Thomas, W, M. (1995). Friction stir welding. In Proc.11th Annual North American Welding Research Conference, Columbus, Oh, USA.
  • 4. Fujii, H., Sun, Y., Kato, H., and Nakata, K. (2010). Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure ti joints. Materials Science and Engineering: A, 527(15):3386–3391.
  • 5. Lee, W.-B., Lee, C.-Y., Chang, W.-S., Yeon, Y.-M., and Jung, S.-B. (2005). Microstructural investigation of friction stir welded pure titanium. Materials Letters, 59(26):3315–3318.
  • 6. Liu, H., Nakata, K., Yamamoto, N., and Liao, J. (2010). Grain orientation and texture evolution in pure titanium lap joint produced by friction stir welding. Materials transactions, 51(11):2063–2068.
  • 7. Majewski, T. (2013). Technologiczne uwarunkowania właściwości użytkowych spieków ciężkich W – (Fe, Ni, Re). Wojskowa Akademia Techniczna.
  • 8. Mishra, R. S. and Ma, Z. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50(1):1–78.
  • 9. Polmear, I. (1998). Control of precipitation processes and properties in aged aluminum alloys by trace element additions. In ICAA-6: 6 th International Conference on Aluminium Alloys, Toyohashi, Japan, 5-10 Japan 1998, pages 75–86.
  • 10. Rai, R., De, A., Bhadeshia, H., and DebRoy, T. (2011). friction stir welding tools. Science and Technology of welding and Joining, 16(4):325–342.
  • 11. Thomas, W., Nicholas, E., Needham, J., and Murch, M. (1995). Improvements relating to friction stir welding. European Patent Specification 0615 480B1.
  • 12. Yazdanian, S. and Chen, Z. (2009). Effect of friction stir lap welding conditions on joint strength of aluminium alloy 6060. In IOP Conference Series: Materials Science and Engineering, volume 4, page 012021. IOP Publishing.
  • 13. Yoon, S., Ueji, R., and Fujii, H. (2015). Effect of initial microstructure on Ti–6Al–4V joint by friction stir welding. Materials & Design, 88:1269–1276.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41738f60-6381-48a4-8972-2e55e86715e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.