PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of new Ti-based materials manufactured in situ for biomedical applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper aims to present current trends and achievements in fabricating biomedical titanium materials with selected additives via in-situ additive manufacturing (AM) by selective laser melting (SLM). Design/methodology/approach With the help of the Scopus search engine, the articles regarding in-situ fabricating of titanium-molybdenum, titanium-niobium, titanium-zirconium, and titanium with the addition of selected transition metal carbides were collected. The information on material composition, phase structure and mechanical properties were aggregated and compared. A heuristic analysis was conducted to determine the potential and attractiveness of each proposed Ti-based material for use in biomedical applications. The results of the analysis to make a dendrological matrix plot were used. Findings Despite good biocompatibility and mechanical properties closer to the human bone than Ti6Al4V, the suggested additives, except niobium, do not exhibit strong popularity. Due to its beneficial impact on the desired mechanical properties, the titanium-to-additive ratio is often experimentally determined to retain as much βTi phase as possible. Research limitations/implications Based on the collected data, the in-situ alloyed titanium-niobium possesses the closest mechanical properties to the human bone of all considered additives. In-situ, fabricated titanium-selected transition metal carbides composite with the highest hardness of the proposed additives might be useful for dental applications as coatings or implants. Practical implications The Ti-based materials presented may be used for prosthetics and dental implants as new alternatives for Ti6Al4V. They are safe and mechanically closer to the human bone as Ti6Al4V. Originality/value Presented work points at the research gap in the in-situ fabricating of titanium and proposed additives during laser-based additive processes. The authors suggest a good potential worth further studying. More research will be conducted in the near future.
Rocznik
Strony
306--319
Opis fizyczny
Bibliogr. 73 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
  • Department of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs, Frontiers of Mechanical Engineering 8 (2013) 215-243. DOI: https://doi.org/10.1007/s11465-013-0248-8
  • [2] M.A Rahman, T. Saleh, M.P. Jahan, C. McGarry, A. Chaudhari, R. Huang, M. Tauhiduzzaman, A. Ahmed, A.A. Mahmud, M.S. Bhuiyan, M.F. Khan, M.S. Alam, M.S. Shakur, Review of Intelligence for Additive and Subtractive Manufacturing: Current Status and Future Prospects, Micromachines 14/3 (2023) 508. DOI: https://doi.org/10.3390/mi14030508
  • [3] M.D. Xames, F.K. Torsha, F. Sarwar, A systematic literature review on recent trends of machine learning applications in additive manufacturing, Journal ofIntelligent Manufacturing 34 (2023) 2529-2555. DOI: https://doi.org/10.1007/s10845-022-01957-6
  • [4] A.D. Dobrzańska-Danikiewicz, B. Siwczyk, A. Bączyk, A. Romankiewicz, Mechanical properties of recycled PLA and PETG printed by FDM/FFM method, Journal of Achievements in Materials and Manufacturing Engineering 119/2 (2023) 49-59. DOI: https://doi.org/10.5604/01.3001.0053.9490
  • [5] M. Dadkhah, J.M Tulliani, A. Saboori, L. Iuliano, Additive manufacturing of ceramics: Advances, challenges, and outlook, Journal of the European Ceramic Society 43/15 (2023) 6635-6664. DOI: https://doi.org/10.1016/j.jeurceramsoc.2023.07.033
  • [6] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Materialia 117 (2016) 371-392. DOI: https://doi.org/10.1016/j.actamat.2016.07.019
  • [7] L.A. Dobrzański, L.B. Dobrzański, A.D Dobrzańska-Danikiewicz, M. Kraszewska, Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in industry 4.0 stage, Archives of Materials Science and Engineering 102/1 (2020) 13-41. DOI: https://doi.org/10.5604/01.3001.0014.1452
  • [8] L.A. Dobrzański, L.B. Dobrzański, A.D Dobrzańska-Danikiewicz, Overview of conventional technologies using the powders of metals, their alloys and ceramics in industry 4.0 stage, Journal of Achievements in Materials and Manufacturing Engineering 98/2 (2020) 56-85. DOI: https://doi.org/10.5604/01.3001.0014.1481
  • [9] S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, W.Y. Yeong, Emerging metallic systems for additive manufacturing: In-situ alloying and multimetal processing in laser powder bed Fusion, Progress in Materials Science 119 (2021) 100795. DOI: https://doi.org/10.1016/j.pmatsci.2021.100795
  • [10] ISO 5832-3:2021. Implants for surgery. Metallic materials. Part 3: Wrought titanium 6-aluminium 4 vanadium alloy.
  • [11] A. Sidambe, Biocompatibility of advanced manufactured titanium implants - a review, Materials 7/12 (2014) 8168-8188. DOI: https://doi.org/10.3390/ma7128168
  • [12] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, Comparative analysis of mechanical properties of scaffolds sintered from Ti and Ti6Al4V powders, Archives of Material Science and Engineering 73/2 (2015) 69-81.
  • [13] A.D. Dobrzańska-Danikiewicz, Foresight Methods for Technology Validation, Roadmapping and Development in the Surface Engineering Area, Archives of Material Science and Engineering 44/2 (2010) 69-86.
  • [14] L.A. Dobrzański, Fundamentals of materials science and metal science, WNT, Warszawa, 2002 (in Polish).
  • [15] Y.P. Dong, Y.L. Li, S.Y. Zhou, Y.H. Zhou, M.S. Dargusch, H.X. Peng, M. Yan, Cost-affordable Ti-6Al-4V for additive manufacturing: Powder modification, compositional modulation and laser in-situ alloying, Additive Manufacturing 37 (2021) 101699. DOI: https://doi.org/10.1016/j.addma.2020.101699
  • [16] J.Y. Xu, K.L. Li, J.C. Tang, Y.H. Zhou, J.P. Luo, W. Tang, Y.X Lai, M.S. Dargusch, M. Yan, Additive manufacturing of anti-bacterial and low-cost Ti–Mo(–Ag) alloys using elemental powders through in situ laser alloying, Journal of Materials Science 58/5 (2023) 2268-2293. DOI: https://doi.org/10.1007/s10853-022-08107-6
  • [17] W. Ye, Y. Tian, D. Zhou, P. Li, J. Lei, Y. Zhang, Thermal Model and Numerical Simulation of Selective Laser Alloying Process of Elemental Ti and B, Metals and Materials International 27/8 (2021) 2791-2808. DOI: https://doi.org/10.1007/s12540-020-00955-8
  • [18] P. Zháňal, P. Beran, T. Hansen, J. Šmilauerová, J. Stráský, M. Janeček, P. Harcuba, Thermal expansion evolution of metastable β Ti-15Mo alloy during linear heating, IOP Conference Series: Materials Science and Engineering 461 (2018) 012094. DOI: https://doi.org/10.1088/1757-899x/461/1/012094
  • [19] H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O'Donnell, D. Trimble, Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review, International Journal of Machine Tools and Manufacture 128 (2018) 1-20. DOI: https://doi.org/10.1016/j.ijmachtools.2018.01.003
  • [20] P.S. Cook, D.J. Ritchie, Determining the laser absorptivity of Ti-6Al-4V during laser powder bed fusion by calibrated melt pool simulation, Optics and Laser Technology 162 (2023) 109247. DOI: https://doi.org/10.1016/j.optlastec.2023.109247
  • [21] I. Polozov, V. Sufiiarov, A. Popovich, D. Masaylo, A. Grigoriev, Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing, Journal of Alloys and Compounds 763 (2018) 436-445. DOI: https://doi.org/10.1016/j.jallcom.2018.05.325
  • [22] F. Huber, T. Papke, C. Kauffmann, R. Rothfelder, P. Krakhmalev, M. Merklein, M. Schmidt, Systematic exploration of the L-PBF processing behavior and resulting properties of β-stabilized Ti-alloys prepared by in-situ alloy formation, Materials Science and Engineering: A 818 (2021) 141374. DOI: https://doi.org/10.1016/j.msea.2021.141374
  • [23] M. Simonelli, D.G. McCartney, P. Barriobero-Vila, N.T. Aboulkhair, Y.Y. Tse, A. Clare, R. Hague, The Influence of Iron in Minimizing the Microstructural Anisotropy of Ti-6Al-4V Produced by Laser Powder-Bed Fusion, Metallurgical and Materials Transactions A 51 (2020) 2444-2459. DOI: https://doi.org/10.1007/s11661-020-05692-6
  • [24] S. Ciliveri, A. Bandyopadhyay, Understanding the influence of alloying elements on the print quality of powder bed fusion-based metal additive manufacturing: Ta and Cu addition to Ti alloy, Virtual and Physical Prototyping 18/1 (2023) e2248464. DOI: https://doi.org/10.1080/17452759.2023.2248464
  • [25] M. Chen, S. Van Petegem, Z. Zou, M. Simonelli, Y.Y. Tse, C.S.T. Chang, M.G. Makowska, D. Ferreira Sanchez, H. Moens-Van Swygenhoven, Microstructural engineering of a dual-phase Ti-Al-V-Fe alloy via in situ alloying during laser powder bed Fusion, Additive Manufacturing 59/B (2022) 103173. DOI: https://doi.org/10.1016/j.addma.2022.103173
  • [26] T. Zhang, C.T. Liu, Design of titanium alloys by additive manufacturing: A critical review, Advanced Powder Materials 1/1 (2022) 100014. DOI: https://doi.org/10.1016/j.apmate.2021.11.001
  • [27] Q. Shi, S. Yang, Y. Sun, Y. Gu, B. Mercelis, S. Zhong, B. Van Meerbeek, C. Politis, In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo 2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms, Journal of Materials Science and Technology 115 (2022) 81-96. DOI: https://doi.org/10.1016/j.jmst.2021.09.017
  • [28] R. Uklejewski, M. Winiecki, P. Rogala, On the structural-adaptive compatibility of bone with porous coated implants on the base of the traditional one-phase and the modern two-phase poroelastic biomechanical model of bone tissue, Engineering of Biomaterials 54-55 (2006) 1-13.
  • [29] A. Almeida, D. Gupta, C. Loable, R. Vilar, Laser-assisted synthesis of Ti–Mo alloys for biomedical applications, Materials Science and Engineering: C 32/5 (2012) 1190-1195. DOI: https://doi.org/10.1016/j.msec.2012.03.007
  • [30] N. Kang, Y. Li, X. Lin, E. Feng, W. Huang, Microstructure and tensile properties of Ti-Mo alloys manufactured via using laser powder bed fusion, Journal of Alloys and Compounds 771 (2019) 877-884. DOI: https://doi.org/10.1016/j.jallcom.2018.09.008
  • [31] N. Kang, X. Lin, C. Coddet, X. Wen, W. Huang, Selective laser melting of low modulus Ti-Mo alloy: α/β heterogeneous conchoidal structure, Materials Letters 267 (2020) 127544. DOI: https://doi.org/10.1016/j.matlet.2020.127544
  • [32] T. Krajňák, M. Janeček, J. Kozlík, D. Preisler, J. Stráský, M. Brázda, J. Kout, K. Halmešová, J. Džugan, Influence of the thermal history on the phase composition of laser directed energy deposited Ti-8.5 wt.% Mo alloy, Materials and Design 222 (2022)111049. DOI: https://doi.org/10.1016/j.matdes.2022.111049
  • [33] T.C. Dzogbewu, W.B. Du Preez, In situ alloying of Ti10Mo fused tracks and layers via laser powder bed Fusion, Manufacturing Review 9 (2022) 23. DOI: https://doi.org/10.1051/mfreview/2022022
  • [34] T.C. Dzogbewu, W.B. Du Preez, Fused tracks and layers of Ti10Mo6Cu data obtained via laser powder bed Fusion, Data in Brief 46 (2023) 108775. DOI: https://doi.org/10.1016/j.dib.2022.108775
  • [35] J. Peterson, S. Kariya, A. Issariyapat, J. Umeda, K. Kondoh, Experimentally mapping the oriented-to-misoriented transition in laser powder bed fusion Ti-10%Mo alloys, Scripta Materialia 231 (2023) 115472. DOI: https://doi.org/10.1016/j.scriptamat.2023.115472
  • [36] R. Duan, S. Li, B. Cai, Z. Tao, W. Zhu, F. Ren, M.M. Attallah, In situ alloying based laser powder bed Fusion processing of β Ti–Mo alloy to fabricate functionally graded composites, Composites Part B: Engineering 222 (2021) 109059. DOI: https://doi.org/10.1016/j.compositesb.2021.109059
  • [37] R. Duan, S. Li, B. Cai, W. Zhu, F. Ren, M.M. Attallah, A high strength and low modulus metastable β Ti-12Mo-6Zr-2Fe alloy fabricated by laser powder bed fusion in-situ alloying, Additive Manufacturing 37(2021) 101708. DOI: https://doi.org/10.1016/j.addma.2020.101708
  • [38] K. Zhao, X. Zhou, T. Hu, Y. Li, Z. Ye, F. Zhang, M. Wang, H. Tan, Microstructure characterization and tensile properties of Ti–15Mo alloy formed by directed energy deposition, Materials Science and Engineering: A 858 (2022) 144103. DOI: https://doi.org/10.1016/j.msea.2022.144103
  • [39] Y. Liu, J. Zhang, Q. Tan, Y. Yin, M. Li, M.-X. Zhang, Mechanical performance of simple cubic architected titanium alloys fabricated via selective laser melting, Optics and Laser Technology 134 (2021) 106649. DOI: https://doi.org/10.1016/j.optlastec.2020.106649
  • [40] T.C. Dzogbewu, Laser powder bed fusion of Ti15Mo, Results in Engineering 7 (2020) 100155. DOI: https://doi.org/10.1016/j.rineng.2020.100155
  • [41] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Titanium Alloys Manufactured by In Situ Alloying During Laser Powder Bed Fusion, JOM 69/12 (2017) 2725-2730. DOI: https://doi.org/10.1007/s11837-017-2600-7
  • [42] W. Ho, C. Ju, J. Chern Lin, Structure and properties of cast binary Ti–Mo alloys, Biomaterials 20/22 (1999) 2115-2122. DOI: https://doi.org/10.1016/s0142-9612(99)00114-3
  • [43] I. Weiss, S.L. Semiatin, Thermomechanical processing of beta titanium alloys ‒ an overview, Materials Science and Engineering: A 243/1-2 (1998) 46-65. DOI: https://doi.org/10.1016/s0921-5093(97)00783-1
  • [44] C. Zhu, G. Peng, Y.C. Lin, X.-Y. Zhang, C. Liu, K. Zhou, Effects of Mo and Cr contents on microstructures and mechanical properties of near β-Ti alloy, Materials Science and Engineering: A 825 (2021) 141882. DOI: https://doi.org/10.1016/j.msea.2021.141882
  • [45] H. Ben Boubaker, P. Laheurte, G. Le Coz, S.-S. Biriaie, P. Didier, P. Lohmuller, A. Moufki, Impact of the Loading Conditions and the Building Directions on the Mechanical Behavior of Biomedical β-Titanium Alloy Produced In Situ by Laser-Based Powder Bed Fusion, Materials 15/2 (2022) 509. DOI: https://doi.org/10.3390/ma15020509
  • [46] D. Zhao, C. Han, J. Li, J. Liu, Q. Wei, In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting, Materials Science and Engineering: C 111 (2020) 110784. DOI: https://doi.org/10.1016/j.msec.2020.110784
  • [47] J.M. Borgman, J. Wang, L. Zani, P.P. Conway, C. Torres-Sanchez, The Effect of Energy Density and Nb Content on the Microstructure and Mechanical Properties of Selective Laser Melted Ti-(10-30 wt.%)Nb, Journal of Materials Engineering and Performance 30/12 (2021) 8771-8783. DOI: https://doi.org/10.1007/s11665-021-06239-5
  • [48] S. Huang, R.L. Narayan, J.H.K. Tan, S.L. Sing, W.Y. Yeong, Resolving the porosity-unmelted inclusion dilemma during in-situ alloying of Ti34Nb via laser powder bed fusion, Acta Materialia 204 (2021) 116522. DOI: https://doi.org/10.1016/j.actamat.2020.116522
  • [49] M. Fischer, D. Joguet, G. Robin, L. Peltier, P. Laheurte, In situ elaboration of a binary Ti–26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders, Materials Science and Engineering: C 62 (2016) 852-859. DOI: https://doi.org/10.1016/j.msec.2016.02.033
  • [50] Y.P. Sharkeev, A.Y. Eroshenko, Z.G. Kovalevskaya, A.A. Saprykin, E.A. Ibragimov, I.A. Glukhov, E.V. Babakova, Structural and Phase State of Ti–Nb Alloy at Selective Laser Melting of the Composite Powder, Russian Physics Journal 59/3 (2016) 430-434. DOI: https://doi.org/10.1007/s11182-016-0790-z
  • [51] S. Huang, P. Kumar, W.Y. Yeong, R.L. Narayan, U. Ramamurty, Fracture behavior of laser powder bed fusion fabricated Ti41Nb via in-situ alloying, Acta Materialia 225 (2022) 117593. DOI: https://doi.org/10.1016/j.actamat.2021.117593
  • [52] Q. Zhao, T. Ueno, N. Wakabayashi, A review in titanium-zirconium binary alloy for use in dental implants: Is there an ideal Ti-Zr composing ratio?, Japanese Dental Science Review 59 (2023) 28-37. DOI: https://doi.org/10.1016/j.jdsr.2023.01.002
  • [53] K. Kondoh, M. Fukuo, S. Kariya, K. Shitara, S. Li, A. Alhazaa, J. Umeda, Quantitative strengthening evaluation of powder metallurgy Ti–Zr binary alloys with high strength and ductility, Journal of Alloys and Compounds 852 (2021) 156954. DOI: https://doi.org/10.1016/j.jallcom.2020.156954
  • [54] Q. Xie, Y. Cao, J. Huang, N. Li, Y. Liu, Effect oflaser energy density on microstructural evolution of selective laser melted Ti-15Zr alloy, Journal of Alloys and Compounds 934 (2023) 167778. DOI: https://doi.org/10.1016/j.jallcom.2022.167778
  • [55] K.D. Traxel, A. Bandyopadhyay, Reactive-deposition-based additive manufacturing of Ti-Zr-BN composites, Additive Manufacturing 24 (2018) 353-363. DOI: https://doi.org/10.1016/j.addma.2018.10.005
  • [56] W. Kong, S.C. Cox, Y. Lu, V. Villapun, X. Xiao, W. Ma, M. Liu, M.M. Attallah, The influence of zirconium content on the microstructure, mechanical properties, and biocompatibility of in-situ alloying Ti-Nb-Ta based β alloys processed by selective laser melting, Materials Science and Engineering C 131 (2021) 112486. DOI: https://doi.org/10.1016/j.msec.2021.112486
  • [57] J. Zhou, Y. Wang, G. Zhi, L. He, Effect of Laser Power on Anisotropic Microstructure and Mechanical Behavior of Biomedical Ti-35Nb-15Zr (at%) Alloy Fabricated by Laser Powder Bed Fusion, Metals and Materials International 30 (2024) 240-252. DOI: https://doi.org/10.1007/s12540-023-01494-8
  • [58] M.A. Eryomina, S.F. Lomayeva, E.V. Kharanzhevskiy, I.N. Burnyshev, Peculiarities of phase formation in the mechanosynthesized titanium carbohydride powders under short pulse selective laser alloying, The European Physical Journal Special Topics 229/2-3(2020) 187-195.DOI: https://doi.org/10.1140/epjst/e2019-900106-6
  • [59] S. Dadbakhsh, R. Mertens, G. Ji, B. Vrancken, K.Vanmeensel, H. Fan, J.P. Kruth, Heat treatment possibilities for an in situ βTi-TiC composite made by laser powder bed fusion, Additive Manufacturing 36(2020) 101577. DOI: https://doi.org/10.1016/j.addma.2020.101577
  • [60] L. Xi, L. Feng, D. Gu, R. Wang, B. Sarac, K.G. Prashanth, J. Eckert, ZrC+TiC synergically reinforced metal matrix composites with micro/nanoscale reinforcements prepared by laser powder bed Fusion, Journal of Materials Research and Technology 19(2022) 4645-4657. DOI: https://doi.org/10.1016/j.jmrt.2022.06.149
  • [61] S.L. Sing, F.E. Wiria, W.Y. Yeong, Selective laser melting of titanium alloy with 50 wt% tantalum: Effect of laser process parameters on part quality, International Journal of Refractory Metals and Hard Materials 77 (2018) 120-127. DOI: https://doi.org/10.1016/j.ijrmhm.2018.08.006
  • [62] S. Huang, S.L. Sing, G. Delooze, R. Wilson, W.Y. Yeong, Laser powder bed fusion of titanium-tantalum alloys: Compositions and designs for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials 108 (2020) 103775. DOI: https://doi.org/10.1016/j.jmbbm.2020.103775
  • [63] M.H. Mosallanejad, B. Niroumand, A. Aversa, D. Manfredi, A. Saboori, Laser Powder Bed Fusion in-situ alloying of Ti-5%Cu alloy: Process-structure relationships, Journal of Alloys and Compounds 857(2021) 157558. DOI: https://doi.org/10.1016/j.jallcom.2020.157558
  • [64] A.M. Vilardell, A. Takezawa, A. du Plessis, N. Takata, P. Krakhmalev, M. Kobashi, I. Yadroitsev, Mechanical behavior of in-situ alloyed Ti6Al4V(ELI)-3 at.% Cu lattice structures manufactured by laser powder bed fusion and designed for implant applications, Journal of the Mechanical Behavior of Biomedical Materials 113(2021) 104130. DOI: https://doi.org/10.1016/j.jmbbm.2020.104130
  • [65] H. Wang, H.L. Luo, J.Q. Chen, J.C. Tang, X.Y. Yao, Y.H. Zhou, M. Yan, Cost-affordable, biomedical Ti-5Fe alloy developed using elemental powders and laser in-situ alloying additive manufacturing, Materials Characterization 182 (2021) 111526. DOI: https://doi.org/10.1016/j.matchar.2021.111526
  • [66] F.F. Ahmed, S.J. Clark, C.L. Alex Leung, L. Stanger, J. Willmott, S. Marussi, V. Honkimaki, N. Haynes, H.S. Zurob, P.D. Lee, A.B. Phillion, Achieving homogeneity in a high-Fe β-Ti alloy laser-printed from blended elemental powders, Materials and Design 210 (2021) 110072. DOI: https://doi.org/10.1016/j.matdes.2021.110072
  • [67] E.F. Morgan, G.U. Unnikrisnan, A.I. Hussein, Bone Mechanical Properties in Healthy and Diseased States, Annual Review of Biomedical Engineering 20 (2018)119-143. DOI: https://doi.org/10.1146/annurev-bioeng-062117-121139
  • [68] S. Li, J. Wang, B. Yin, Z. Hu, X. Zhang, W. Wu, G. Liu, Y. Liu, L. Fu, Y. Zhang, Atlas of Human Skeleton Hardness Obtained Using the Micro‐indentation Technique, Orthopaedic Surgery 13/4 (2021) 1417-1422. DOI: https://doi.org/10.1111/os.12841
  • [69] K. Chun, H. Choi, J. Lee, Comparison of mechanical property and role between enamel and dentin in the human teeth, Journal of Dental Biomechanics 5 (2014) 1-7. DOI: https://doi.org/10.1177/1758736014520809
  • [70] F. Bartolomeu, M. Gasik, F.S. Silva, G. Miranda, Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties, Metals 12/6 (2022) 986. DOI: https://doi.org/10.3390/met12060986
  • [71] A. Dobrzańska-Danikiewicz, E-foresight of materials surface engineering, Archives of Materials Science and Engineering 44/1 (2010) 43-50.
  • [72] M. Simonelli, N.T. Aboulkhair, P. Cohen, J.W. Murray, A.T. Clare, C. Tuck, R.J.M. Hague, A comparison of Ti-6Al-4V in-situ alloying in Selective Laser Melting using simply-mixed and satellited powder blend feedstocks, Materials Characterization 143 (2018) 118-126. DOI: https://doi.org/10.1016/j.matchar.2018.05.039
  • [73] S. Patel, M. Vlasea, Melting Modes in Laser Powder Bed Fusion. Materialia 9 (2020) 100591. DOI: https://doi.org/10.1016/j.mtla.2020.100591
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-417299b5-e66e-4d1f-bf37-6c5f44df6603
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.