PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel exoskeleton robotic system for hand rehabilitation – Conceptualization to prototyping

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research presents a novel hand exoskeleton rehabilitation device to facilitate tendon therapy exercises. The exoskeleton is designed to assist fingers flexion and extension motions in a natural manner. The proposed multi-Degree Of Freedom (DOF) system consists of a direct- driven, optimized and underactuated serial linkage mechanism having capability to exert extremely high force levels perpendicularly on the finger phalanges. Kinematic and dynamic models of the proposed device have been derived. The device design is based on the results of multi-objective optimization algorithm and series of experiments conducted to study capa- bilities of the human hand. To permit a user-friendly interaction with the device, the control is based on minimum jerk trajectory generation. Using this control system, the transient response and steady state behavior of the proposed device are analyzed after designing and fabricating a two-fingered prototype. The pilot study shows that the proposed rehabilita- tion system is capable of flexing and extending the fingers with accurate trajectories.
Twórcy
autor
  • Advanced Robotics Department, Istituto Italiano di Tecnologia (IIT), Genova, Italy; Department of Electrical Engineering, COMSATS, Islamabad, Pakistan
autor
  • Advanced Robotics Department, Istituto Italiano di Tecnologia (IIT), Genova, Italy
  • Advanced Robotics Department, Istituto Italiano di Tecnologia (IIT), Genova, Italy
  • Advanced Robotics Department, Istituto Italiano di Tecnologia (IIT), Genova, Italy
Bibliografia
  • [1] Ferris DP. The exoskeletons are here. J Neuroeng Rehabil 2009;6:17.
  • [2] Rathore SS, Hinn AR, Cooper LS, Tyroler HA, Posamond WD. Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke 2002;33(11):2718–21.
  • [3] Duncan PW, Bode RK, Min Lai S, Perera S. Rasch analysis of a new stroke specific outcome scale: the stroke impact scale. Arch Phys Med Rehabil 2003;84(7):950–63.
  • [4] Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T. A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng 2007;15(3): 356–66.
  • [5] Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 2003;34(9):2181–6.
  • [6] Kamper DG, Harvey RL, Suresh S, Rymer WZ. Relative contributions of neural mechanisms versus muscle mechanics in promoting finger extension deficits following stroke. Muscle Nerve 2003;28(3):309–18.
  • [7] Carey JR, Durfee WK, Bhatt E, Nagpal A, Weinstein SA, Anderson KM, et al. Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke. Neurorehabil Neural Repair 2007;21(3):216–32.
  • [8] Fischer HC, Stubblefield K, Kline T, Luo X, Kenyon RV, Kamper DG. Hand rehabilitation following stroke: a pilot study of assisted finger extension training in a virtual environment. Top Stroke Rehabil 2007;14(1):1–12.
  • [9] JACE H440 hand CPM. http://www.jacesystems.com/products/hand_h440.htm [accessed 24.05.13].
  • [10] Fu Y, Wang P, Wang S. Development of a multi-DOF exoskeleton based machine for injured fingers. Proc IEEE/ RSJ International Conference on Intelligent RObots and Systems (IROS), Nice. 2008. pp. 1946–51.
  • [11] Brokaw EB, Black I, Holley RJ, Lum PS. Hand Spring Operated Movement Enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2011;19(4):391–9.
  • [12] Tzafestas CS. Whole-hand kinesthetic feedback and haptic perception in dextrous virtual manipulation. IEEE Trans Syst Man Cybern B: Cybern 2003;33(1):100–13.
  • [13] Stergiopoulos P, Fuchs P, Laurgeau C. Design of a 2-finger hand exoskeleton for VR grasping simulation. Proc Eurohaptics, Dublin. 2003. pp. 80–93.
  • [14] Richardson BL, Wuillemin DB, Symmons MA, Accardi R. The exograsp delivers tactile and kinaesthetic information about virtual objects. Proc IEEE Tencon, Melbourne. 2005. pp. 1–3.
  • [15] Folgheraiter M, Gini G, Vercesi DL. A glove interface with tactile feeling display for humanoid robotics and virtual reality systems. Proc International Conference on Informatics in Control, Automation and Robotics (ICINCO), Barcelona; 2005.
  • [16] Lelieveld MJ, Maeno T, Tomiyama T. Design and development of two concepts for a 4 DOF portable haptic interface with active and passive multi-point force feedback for the index finger. Proc ASME International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering (CIE) Conference, Philadelphia; 2006.
  • [17] Iqbal J, Tsagarakis NG, Caldwell DG. Design of a wearable direct-driven optimized hand exoskeleton device. Proc 4th International Conference on Advances in Computer– Human Interactions (ACHI), Gosier; 2011. pp. 142–6.
  • [18] Bouzit M, Burdea G, Popescu G, Boian R. The Rutgers Master II-New Design force-feedback glove. IEEE/ASME Trans Mechatron 2002;12(4):399–407.
  • [19] Ito S, Kawasaki H, Ishigure Y, Natsume M, Mouri T, Nishimoto Y. A design of fine motion assist equipment for disable hand in robotic rehabilitation system. J Franklin Inst 2011;348(1):79–89.
  • [20] Sarakoglou I, Tsagarakis N, Caldwell D. Occupational and physical therapy using a hand exoskeleton based exerciser. Proc IEEE/RSJ International Conference on Intelligent RObots and Systems (IROS), Sendai; 2004. pp. 2973–8.
  • [21] Wege A, Hommel G. Development and control of a hand exoskeleton for rehabilitation of hand injuries. Proc IEEE/ RSJ International Conference on Intelligent RObots and Systems (IROS), Edmonton. 2005. pp. 3046–51.
  • [22] Lenzi T, De Rossi S, Vitiello N, Chiri A, Roccella S, Giovacchini F, et al. The neuro-robotics paradigm: NEURARM, NEUROExos, HANDEXOS. Proc 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Minneapolis. 2009. pp. 2430–3.
  • [23] Schabowsky CN, Godfrey SB, Holley RJ, Lum PS. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot. J Neuroeng Rehabil 2010;7:36.
  • [24] Wang J, Li J, Zhang Y, Wang S. Design of an exoskeleton for index finger rehabilitation. Proc 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Minneapolis. 2009. pp. 5957–60.
  • [25] Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, et al. Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther 2002;82(9):898–915.
  • [26] Dovat L, Lambercy O, Salman B, Johnson V, Milner T, Gassert R, et al. A technique to train finger coordination and independence after stroke. Disabil Rehabil Assist Technol 2010;5(4):279–87.
  • [27] Amadeo – for all phases of neurological rehabilitation. http://tyromotion.com/en/products/amadeo/overview [accessed 24.05.13].
  • [28] Frisoli A, Simoncini F, Bergamasco M. Mechanical design of a haptic interface for the hand. Proc ASME Design Engineering Technical Conferences, Montreal; 2002. pp. 25–32.
  • [29] Tsagarakis N, Caldwell D. Development and control of a 'Soft- actuated' exoskeleton for use in physiotherapy and training. Auton Robots Spec Issue Rehabil Robot 2003;15:21–33.
  • [30] Ochoa J, Dev Narasimhan YJ, Kamper DG. Development of a portable actuated orthotic glove to facilitate gross extension of the digits for therapeutic training after stroke. Proc 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Minneapolis. 2009. pp. 6918–21.
  • [31] Manzoor S, Islam RU, Khalid A, Samad A, Iqbal J. An open-source multi-DOF articulated robotic educational platform for autonomous object manipulation. Robot Comput Integr Manuf 2014;30(3):351–62.
  • [32] Iqbal J, Tsagarakis N, Fiorilla AE, Caldwell DG. Design requirements of a hand exoskeleton robotic device. Proc 14th IASTED International Conference on Robotics and Applications (RA), Cambridge, MA. 2009. pp. 44–51.
  • [33] Spong MW, Vidyasagar M. Robot dynamics and control. New Jersey, United States: John Wiley and Sons; 1989.
  • [34] Awrejcewicz J. Classical mechanics. Kinematics and statics. New York: Springer; 2012.
  • [35] Iqbal J, Tsagarakis NG, Caldwell DG. A human hand compatible optimised exoskeleton system. Proc IEEE International Conference on RObotics and BIOmimetics (ROBIO), Tianjin; 2010. pp. 685–90.
  • [36] Stocco L, Salcudean SE, Sassani F. Fast constrained global minimax optimization of robot parameters. Robotica 1998;16(6):595–605.
  • [37] Iqbal J, Tsagarakis N, Caldwell D. Design optimization of a hand exoskeleton rehabilitation device. Proc Robotics Sciences and Systems (RSS), Workshop on Understanding the Human Hand for Advancing Robotic Manipulation Proceedings, Seattle; 2009. p. 44–5.
  • [38] Iqbal J, Tsagarakis N, Fiorilla AE, Caldwell D. A portable rehabilitation device for the hand. Proc 32nd IEEE Annual International Conference of Engineering in Medicine and Biology Society (EMBS), Buenos Aires; 2010. pp. 3694–7.
  • [39] Shadmehr R, Wise SP. Supplementary documents for computational neurobiology of reaching and pointing. Cambridge, MA: MIT Press; 2005.
  • [40] Khan AA, Riaz S, Iqbal J. Surface estimation of a pedestrian walk for outdoor use of power wheelchair based robot. Life Sci J 1097-81352013;10(3):1697–704.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41721762-438e-4dbd-84c5-c9586fc8589d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.