Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
17th Summer Safety & Reliability Seminars - SSARS 2023, 9-14 July 2023, Kraków, Poland
Języki publikacji
Abstrakty
A two-unit system subject to imperfect maintenance is analyzed in this chapter. The deterioration of the system follows a bivariate Wiener degradation process. This process is built from the trivariate reduction method by sharing a common noise that describes the dependence between both units. This dependence is measured through the Pearson’s correlation coefficient between both degradation trajectories of the bivariate Wiener process at time t. A maintenance strategy consisting of periodic inspections in which the accumulated deterioration of the system is reduced by a certain quantity is implemented. Some results on the monotonicity of the Pearson’s correlation coefficient in different scenarios are obtained.
Rocznik
Strony
7--17
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
- University of Extremadura, Cáceres, Spain
autor
- University of Extremadura, Cáceres, Spain
autor
- GIPSA-Lab, Université Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France
autor
- Laboratoire Jean Kuntzmann, Université Grenoble Alpes, France
autor
- Laboratoire Jean Kuntzmann, Université Grenoble Alpes, France
Bibliografia
- Assaf, R., Do, P., Nefti-Meziani, S. & Scarf, P. 2018. Wear rate-state interactions within a multi-component system: a study of a gearbox-accelerated life testing platform. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 232(4), 425-434.
- Barlow, R.E. & Proschan, F. 1975. Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York.
- Bian, L. & Gebraeel, N. 2014. Stochastic framework for partially degradation systems with continuous component degradation‐rate‐interactions. Naval Research Logistics 61(4), 286-303.
- Chen, W. & Zhao, G. 2020. A multivariate correlation degradation model for reliability analysis based on copula. Annual Reliability and Maintainability Symposium 2020 (RAMS), 1-6.
- Cho, D.I. & Parlar, M. 1991. A Survey of Maintenance Models for Multi-Unit Systems. European Journal of Operational Research, 51(2), 1-23.
- Conroy, S.B.A. 2016. A Simulation Study of biBariate Wiener Process Models for an Observable Marker and Latent Health Status. PhD dissertation, The Ohio State University.
- Fang, G., Pan, R. & Hong, Y. 2020. Copula-based reliability analysis of degrading systems with dependent failures. Reliability Engineering & System Safety 193, 106618.
- Gaudoin, O. & Doyen, L. 2006. Imperfect maintenance in a generalized competing risks framework. Journal of Applied Probability 43, 825-839.
- Hong, L., Ye, Z.S. & Ling, R. 2018. Environmental risk assessment of emerging contaminants using degradation data. Journal of Agricultural, Biological, and Environmental Statistics 23, 390-409.
- Kołowrocki, K. & Magryta-Mut, B. 2020. Safety of maritime ferry technical system impacted by operation process. Kołowrocki et al. (Eds.). Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar 2020. Gdynia Maritime University, Gdynia, 117-134.
- Kong, X., Yang, Y. & Li, L. 2022. Reliability analysis for multi-component systems considering stochastic dependency based on factor analysis. Mechanical Systems and Signal Processing 169, 108754.
- Lai, C.D. 1995. Construction of bivariate distributions by a generalised trivariate reduction technique. Statistics & Probability Letters 25, 265-170.
- Lawless, J. & Crowder, M. 2004. Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Analysis 10, 213-227.
- Liu, X., Al-Khalifa, K.N., Elsayed E.A., Coit, D.W. & Hamouda, A.S. 2014. Criticality measures for components with multi-dimensional degradation. IIE Transactions 46(10), 987-998.
- Mercier, S. & Castro, I.T. 2019. Stochastic comparisons of imperfect maintenance models for a gamma deteriorating system. European Journal of Operational Research 273(1), 237-248.
- Mercier, S. & Pham, H. 2017. A bivariate failure time model with random shocks and mixed effects. Journal of Multivariate Analysis 153, 33-51.
- Mercier, S. & Verdier, G. 2022. On the modeling of dependence between univariate Lévy wear processes and impact on the reliability function. Applied Stochastic Models in Business and Industry, 1-25.
- Mercier, S., Meier-Hirmer, C. & Roussignol, M. 2012. Bivariate gamma wear processes for track geometry modelling, with application to intervention scheduling. Structure and Infrastructure Engineering 8(4), 357-366.
- Moschopoulos, P.G. 1985. The distribution of the sum of independent gamma random variables. Annals of the Institute of Statistical Mathematics 37(1), 541-544.
- Muller, A. 2001. Stochastic ordering of multivariate normal distributions. Annals of the Institute of Statistical Mathematics 53(3), 567-575.
- Nguyen D.T., Dijoux Y. & Fouladirad M. 2017. Analytical properties of an imperfect repair model and application in preventive maintenance scheduling. European Journal of Operational Research 256(2), 439-453.
- Palayangoda, L.K. & Ng, H.K.T. 2021. Semiparametric and nonparametric evaluation of first-passage distribution of bivariate degradation processes. Reliability Engineering & System Safety 205, 107230.
- Pan, Z., Balakrishnan, N. & Sun, Q. 2011. Bivariate Constant-Stress Accelerated Degradation Model and Inference. Communications in Statistics-Simulation and Computation 40(2), 247-257.
- Rasmekomen, N. & Parlikad, A.K. 2016. Condition-based maintenance of multi-component systems with degradation state-rate interactions. Reliability Engineering and System Safety 148, 1-10.
- Sari, J., Newby, M.J., Brombacher, A. & Tang, L.C. 2009. Bivariate constant stress degradation model: LED lighting system reliability estimation with two-stage modelling. Quality and Reliability Engineering 25(8), 1067-1084.
- Song, K. & Cui. L. 2022. A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction. Reliability Engineering & System Safety 219, 108200.
- Wang, X., Gaudoin, O., Doyen, L., Bérenguer, C. & Xie, M. 2021. Modeling multivariate degradation processes with time-variant covariates and imperfect maintenance effects. Applied Stochastic Models in Business and Industry 37(3), 592-611.
- Whitmore, G.A. 1995. Estimating degradation by a Wiener diffusion process subject to measurement error. Lifetime Data Analysis 1, 307-319.
- Whitmore, G.A., Crowder, M.J. & Lawless, J.F. 1998. Failure inference from a marker process based on a bivariate Wiener model. Lifetime Data Analysis 4(3), 229-51.
- Xu, A., Shen, L., Wang, B. & Tang, Y. 2018. On modeling bivariate wiener degradation process. IEEE Transactions on Reliability 67(3), 897-906.
- Yan B., Wang H. & Ma X. 2022. Correlation-driven multivariate degradation modeling and RUL prediction based on Wiener process model. Quality and Reliability Engineering International 1-27.
- Zhang, N., Fouladirad M. & Barros, A. 2018. Optimal imperfect maintenance cost analysis of a two-component system with failure interactions. Reliability Engineering & System Safety 177, 24-34.
- Zhang, N., Fouladirad, M. & Barros, A. 2017. Maintenance analysis of a two-component load-sharing system. Reliability Engineering & System Safety 167, 67-74.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-417180c1-3572-4d76-87e6-6e0d8d10f8c8