PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Analysis of high temperature oxidation characteristic of chrome-plated, nickel-plated and non-plated mild steels

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza charakterystyki utleniania wysokotemperaturowego chromowanych, niklowanych i nieplaterowanych stali miękkich
Języki publikacji
EN
Abstrakty
EN
Metals are the best engineering materials owing to their superior conductivity, mechanical properties, and formability. However, they can be highly affected by environmental elements like oxygen, chlorine, etc. This reaction of metals with the environmental elements will indeed alter their electrical, chemical, and mechanical properties. To protect against corrosion, various protection methods such as electroplating have been established. The presence of anodic or cathodic films on the substrate surface protects steel from corrosion damage at ambient atmospheric temperature. This work focuses on the effect of temperature on the oxidative (corrosion) rate of non-plated, nickel-plated, and chrome-plated ASTM A283GC mild steel samples. A temperature range of 200–800 °C and a total heating time of 120 min were considered in this experiment. A temperature-regulated muffle furnace with a maximum heating capacity of 1000 °C has been used. Weight changes were determined every 30 minutes of heating using a digital weight balance with a precision of 0.001 g. The obtained experimental results of non-plated, nickel-plated, and chrome-plated mild steel samples were analyzed and compared with each other. The effect of oxidation on the surface hardness has also been studied with the help of a Vickers hardness testing machine. Changes in the physical nature of the samples caused by oxidation were also observed and pictured using a camera.
PL
Metale są najlepszymi materiałami konstrukcyjnymi ze względu na ich doskonałą przewodność właściwą, właściwości mechaniczne i odkształcalność. Jednakże wpływ czynników środowiskowych takich jak tlen i chlor może zmienić ich właściwości elektryczne, chemiczne i mechaniczne. W celu ochrony metali przed korozją opracowano różne metody ochrony, m.in. w procesie galwanizacji. Obecność filmów anodowych lub katodowych na powierzchni podłoża chroni stal przed uszkodzeniami korozyjnymi w temperaturze otoczenia. Niniejszy artykuł skupia się na wpływie temperatury na szybkość utleniania (korozji) próbek stali miękkiej nieplaterowanej, platerowanej niklem i chromowanej. W badaniach uwzględniono zakres temperatury 200-800°C i całkowity czas ogrzewania 120 minut. Zastosowano piec muflowy z regulowaną temperaturą o maksymalnej wydajności grzewczej 1000°C. Zmiany masy mierzono co 30 minut w trakcie nagrzewania przy użyciu cyfrowej wagi z dokładnością do 0,001 g. Uzyskane wyniki eksperymentalne próbek ze stali miękkiej ASTM A283GC nie platerowanej, platerowanej niklem i chromowanej poddano analizie i porównano ze sobą. Badano także wpływ utleniania na twardość powierzchni za pomocą twardościomierza Vickersa. Zaobserwowane zmiany w zachowaniu próbek spowodowane utlenianiem zostały sfotografowane.
Rocznik
Strony
215--228
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Centre of Biotechnology, Institute of Research and Development, Ethiopian Defence University, Bishoftu, Hora Lake Bishoftu, 1041, Ethiopia
autor
  • Centre of Armament and High Energy Materials, Institute of Research and Development, Ethiopian Defence University, Bishoftu, Hora Lake Bishoftu, 1041, Ethiopia
  • Centre of Armament and High Energy Materials, Institute of Research and Development, Ethiopian Defence University, Bishoftu, Hora Lake Bishoftu, 1041, Ethiopia
autor
  • Centre of Armament and High Energy Materials, Institute of Research and Development, Ethiopian Defence University, Bishoftu, Hora Lake Bishoftu, 1041, Ethiopia
Bibliografia
  • 1. Akhtar, M., Lohchab, A., Singh, D., Kumar, R., Gaur, P., & Yadav, B. (2023). Experimental studies on the effect of chromium plating on the mechanical properties of SAE 4140 steel. Materials Today: Proceedings, 72, 2488–2496. https://doi.org/10.1016/j.matpr.2022.09.527
  • 2. Aliofkhazraei, M. (2014). Developments in corrosion protection. IntechOpen. https://doi.org/10.5772/57010
  • 3. Andrade, C., & Alonso, C. (2001). On-site measurements of corrosion rate of reinforcements. Construction and Building Materials, 15(2-3), 141-145. https://doi.org/10.1016/S0950-0618(00)00063-5
  • 4. Apostolopoulos, C. A., & Papadakis, V. G. (2008). Consequences of steel corrosion on the ductility properties of reinforcement bar. Construction and Building Materials, 22(12), 2316-2324. https://doi.org/10.1016/j.conbuildmat.2007.10.006
  • 5. Burnett, P. J. & Rickerby, D. S. (1987). The relationship between hardness and scratch adhession. Thin Solid Films, 154(1-2), 403-416. https://doi.org/10.1016/0040-6090(87)90382-8
  • 6. Chen, R., & Yeun, W. (2003). Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxidation of Metals, 59, 433–468. https://doi.org/10.1023/A:1023685905159
  • 7. Chen, X. B., Easton, M. A., Birbilis, N., Yang, H. Y. & Abbott, T. B. (2013). Corrosion-resistant electrochemical plating of magnesium (Mg) alloys. In Song, G. L. (Ed.), Corrosion prevention of magnesium alloys (pp. 315-346). Woodhead Publishing Limited. https://doi.org/10.1533/9780857098962.3.315
  • 8. Fotovvati, B., Namdari, N., & Dehghanghadikolaei, A. (2019). On coating techniques for surface protection: A review. Journals of Manufacturing and Materials Processing, 3, 28. https://doi.org/10.3390/jmmp3010028
  • 9. Frankel, G. S. (1998). Pitting corrosion of metals: a review of the critical factors. Journal of The Electrochemical Society, 145(6), 2186-2198. https://doi.org/10.1149/1.1838615
  • 10. Hou, B., Li, X., Ma, X., Du, C., Zhang, D., Zheng, M., Xu, W., Lu, D., & Ma, F. (2017). The cost of corrosion in China. npj Materials Degradation, 1(1), Article 4. https://doi.org/10.1038/s41529-017-0005-2
  • 11. Kanani, N. (2004). Electroplating: basic principles, processes and practice. Elsevier Ltd. https://doi.org/10.1016/B978-1-85617-451-0.X5000-3
  • 12. Klapper, H. S., Zadorozne, N. S., & Rebak, R. B. (2017). Localized corrosion characteristics of nickel alloys: A review. Acta Metallurgica Sinica (English Letters), 30, 296–305. https://doi.org/10.1007/s40195-017-0553-z
  • 13. Lu, K. (2010). The future of metals. Science. 328(5976), 319-320. https://doi.org/10.1126/science.1185866
  • 14. Lunk, H. J. (2015). Discovery, properties and applications of chromium and its compounds. ChemTexts, 1, Article 6. https://doi.org/10.1007/s40828-015-0007-z
  • 15. Ma, E., Yang, X., Su, Y., Bi, Z., Sun, H., Wang, B., Ma, C., & Zhang, D. (2023). High temperature oxidation behavior of Fe–3.0%Si steel with non-equilibrium reaction. Journal of Materials Research and Technology, 23, 2587–2600. https://doi.org/10.1016/j.jmrt.2023.01.163
  • 16. Maurice, V., & Marcus, P. (2018). Progress in corrosion science at atomic and nanometric scales. Progres in Materials Science, 95, 132-171. https://doi.org/10.1016/j.pmatsci.2018.03.001
  • 17. McMahon, M. E., Santucci Jr., R. J., Glover, C. F., Kannan, B., Walsh, Z. R. & Scully, J. R. (2019). A review of modern assessment methods for metal and metal-oxide based primers for substrate corrosion protection. Frontiers in Materials, 6, Article 190. https://doi.org/10.3389/fmats.2019.00190
  • 18. Mehtani, H., Khan, M., Jaya, B. N., Parida, S., Prasad, M., & Samajdar, I. (2021). The oxidation behavior of iron-chromium alloys: The defining role of substrate chemistry on kinetics, microstructure and mechanical properties of the oxide scale. Journal of Alloys and Compounds, 871, Article 159583. https://doi.org/10.1016/j.jallcom.2021.159583
  • 19. Mild Steel. (2023, August 1). Chemical composition - Mechanical properties. https://kvsteel.co.uk/steel/mild-steel.html
  • 20. North, N. A., & MacLeod, I. D. (1987). Corrosion of metals. In C. Pearson (Ed.), Conservation of marine archaeological objects (pp. 68-98), Elsevier. https://doi.org/10.1016/B978-0-408-10668-9.50010-1
  • 21. Ojo, A. A., & Dharmadasa, I. M. (2018). Electroplating of semiconductor materials for applications in large area electronics: A Review. Coatings, 8, 262. https://doi.org/10.3390/coatings8080262
  • 22. Samui, A. & Sivaraman, P. (2010). 11 - Solid polymer electrolytes for supercapacitors. In Sequeira, C., & Santos, D. (Eds.), Polymer electrolytes fundamentals and applications (pp. 431-470). Woodhead Publishing Limited. https://doi.org/10.1533/9781845699772.2.431
  • 23. Wang, H. X., Zhang, Y., Cheng, J. L., & Li, Y. S. (2015). High temperature oxidation resistance and microstructure change of aluminized coating on copper substrate. Transactions of Nonferrous Metals Society of China, 25(1), 184–190. https://doi.org/10.1016/S1003-6326(15)63594-4
  • 24. Weinstein, M., Falconer, C., Doniger, W., Bailly-Salins, L., David, R., Sridharan, K., & Couet, A. (2021). Environmental degradation of electroplated nickel and copper coated SS316H in molten FLiNaK salt. Corrosion Science, 191, Article 109735. https://doi.org/10.1016/j.corsci.2021.109735
  • 25. Young, D. J. (2008). High temperature oxidation and corrosion of metals (2nd ed.), Elsevier. https://doi.org/10.1016/C2014-0-00259-6
  • 26. Zhang, Q., Wang, Q., Zhang, S., Lu, X., & Zhang, X. (2016). Electrodeposition in ionic liquids. ChemPhysChem, 17(3), 335-351. https://doi.org/10.1002/cphc.201500713
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-416bf5a9-6cc9-431f-a041-71bc531c4912
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.