PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analitical criteria of homogeneous and heterogeneous detonation of liquid energetic materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Statistical theory of liquids is used to investigate mechanism of detonation initiation on fronts of flat shock waves in homogeneous liquid and in liquid containing spherical nanopores. We calculated thermodynamic parameters of liquid methane sufficient for shock dissociation of molecules at a front of a shock wave. Calculations of the average single-particle force potential show that at high pressures and temperatures atoms and molecules get emitted from the surface into a nanopore with hyper-thermal speeds. Implosion of spherically symmetric stream of molecules may lead to destruction of the molecules at impact. We explained existence of top and bottom bounds for pressure during detonation initiation in heterogeneous energetic materials. In terms of pair interaction potentials and correlation functions there are formulated criteria for boundary values of thermodynamic parameters which are required for initiation of homogeneous and heterogeneous detonations based on the "hot spot"’ mechanism.
Rocznik
Tom
Strony
5--13
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, K. Sosnkowskiego, 31, 45-272, Opole, PL
Bibliografia
  • [1] Zel’dovich Ya.B., Raizer Yu.P., Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. Academic Press, New York and London, 1966.
  • [2] Walker F.E., A Comparison of the Classical and a Modern Theory of Detonation. Journal de Physique IV 5, C-4, 231-257, 1995.
  • [3] Dremin A.N., Towards Detonation Theory. Journal de Physique IV 5, C-4, 259-276 1995.
  • [4] Dremin A.N., On the Mechanism of Molecular Condensed EMs Transformation under the Effect of Shock and Detonation Waves. Central European Journal of Energetic Materials 5, 31-44, 2008.
  • [5] McGuire R.R., Ornellas D.L., Detonation Chemistry: Diffusion Control in Non-Ideal Explosives. Propellants and Explosives 4, 23-26, 1979.
  • [6] Bowden F.P., Gurton O.A., Birth and Growth of the Explosion in Solids Initiated by Impact. Nature 161, 348-348, 1948.
  • [7] Bowden F.P., Yoffe A.D., Fast Reaction in Solids, Butterworths Scientific Publications, London, 1958.
  • [8] Bowden F.P., Gurton O.A., Initiation of Explosions by Grit Particles. Nature, 162, 654-655, 1948.
  • [9] Dremin A.N., Savrov S.D., Trofimof V.C., Shvedov K.K., Detonation Waves in Condensed Matter, Nauka, Moscow, 1970.
  • [10] Apin A.Ya., O detonacii i wzrywnom gorenii wzrywchatych weshchestw. Doklady AN SSSR, 50, 285-288, 1945 (in Russian).
  • [11] Seely L.B., in Fourth Electric Initiator Symposium. Paper 27, Franklin Inst., Philadelphia, 1963.
  • [12] Phillips L., Sinkovits R.S., Oran E.S., Boris J.P., The interaction of shocks and defects in Lennard-Jones crystals. J. Phys.: Condens. Matter 5, 6357 (1993).
  • [13] Borisenok V.A., Bel’skii V.M., The mechanism of hot spot formation in condensed explosives. Russian Journal of Physical Chemistry B, 2, 187-193, 2008.
  • [14] Bogoliubov N.N., Problems of Dynamic Theory in Statistical Physics. Technical Inform. Serv., Oak Ridge, Tenn., 1960.
  • [15] Kaim Y.S., Kaim S.D., Stability criteria, atomization and non-thermal processes in liquids. Ultrasonics Sonochemistry, 15, 700-708, 2008.
  • [16] Ono S., Kondo S., Molecular Theory of Surface Tension in Liquids, Springer, Berlin, Heidelberg, 1960.
  • [17] Hirschfelder J.O., Curtiss C.F., Bird R.B., Molecular Theory of Gases and Liquids. Wiley, New York, 1954.
  • [18] Andersen H.C., Weeks J.D., Chandler D., Relationship between the hard sphere fluid and fluids with realistic repulsive forces. Physical Review A, 4, 1597-1607, 1971.
  • [19] Ree F.H., Systematics of high pressure and high temperature behavior of hydrocarbons. J. Chem. Phys. 70, 974-983, 1979.
  • [20] Nellis W.J., Hamilton D.C., Mitchell A.C., J.Chem.Phys., Electrical conductivities of methane, benzene, and polybutene shock compressed to 60 GPa (600 kbar). 115, 1015-1019, 2001.
  • [21] Olchov O.V., Volodina N.A., Fedorov A.V., in 10th Internationa
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4160a3cc-b30e-4183-b932-c790dc5567a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.