PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controlling and manipulation of red blood cells by evanescent waves

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A theoretical model for describing the influence of the evanescent wave on the red blood cell (RBC, erythrocyte) in the blood plasma is suggested in this research work. Two optical schemes for creating an evanescent wave and the features of the created field’s effect on the erythrocyte are considered. The conditions for the formation of optical forces and optical momentum, in particular, of the vertical spin of the evanescent wave, which causes a transverse displacement of the erythrocyte, are proposed. The use of a linearly polarized plane wave with azimuth of ±45° in a model experiment, specially suggested in this work, allows for visualization of the transverse controlled motion of the erythrocyte, which enables to claim about new possibilities for controlling microobjects in biology and medicine.
Słowa kluczowe
Czasopismo
Rocznik
Strony
597--611
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Chernivtsi National University, Kotsyubynsky 2, 58012 Chernivtsi, Ukraine
  • Taizhou Research Institute of Zhejiang University, China
  • Chernivtsi National University, Kotsyubynsky 2, 58012 Chernivtsi, Ukraine
  • Chernivtsi National University, Kotsyubynsky 2, 58012 Chernivtsi, Ukraine
  • Chernivtsi National University, Kotsyubynsky 2, 58012 Chernivtsi, Ukraine
  • Chernivtsi National University, Kotsyubynsky 2, 58012 Chernivtsi, Ukraine
Bibliografia
  • [1] XIN H., LI B., Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber, Optics Express 19(14), 2011, pp. 13285–13290, DOI:10.1364/OE.19.013285.
  • [2] DHOLAKIA K., REECE P., Optical micromanipulation takes hold, Nano Today 1(1), 2006, pp. 18–27, DOI:10.1016/S1748-0132(06)70019-6.
  • [3] WANG M. D., YIN H., LANDICK R., GELLES J., BLOCK S.M., Stretching DNA with optical tweezers, Biophysical Journal 72(3), 1997, pp. 1335–1346, DOI:10.1016/S0006-3495(97)78780-0.
  • [4] BUSTAMANTE C., BRYANT Z., SMITH S.B., Ten years of tension: single-molecule DNA mechanics, Nature 421(6921), 2003, pp. 423–427, DOI:10.1038/nature01405.
  • [5] ALTMAN D., SWEENEY H.L., SPUDICH J.A., The mechanism of myosin VI translocation and its load-induced anchoring, Cell 116(5), 2004, pp. 737–749, DOI:10.1016/S0092-8674(04)00211-9.
  • [6] ASBURY C.L., FEHR A.N., BLOCK S.M., Kinesin moves by an asymmetric hand-over-hand mechanism, Science 302(5653), 2003, pp. 2130–2134, DOI:10.1126/science.1092985.
  • [7] ZENKOVA C.YU., GORSKY M.P., RYABIY P.A, GRUIA I., Different approaches to phase restoration of distant complex optical fields, Optica Applicata 45(2), 2015, pp. 139–150, DOI:10.5277/oa150201.
  • [8] ZENKOVA C.YU., GORSKY M.P, RYABYI P.A., The phase problem solving by the use of optical correlation algorithm for reconstructing phase skeleton of complex optical fields, Proceedings of SPIE 9258, 2015, article ID 92582B, DOI:10.1117/12.2070415.
  • [9] ZENKOVA C.YU., GORSKY M.P., RYABIY P.A., ANGELSKAYA A.O., Additional approaches to solving the phase problem in optics, Applied Optics 55(12), 2016, pp. B78–B84, DOI:10.1364/AO.55.000B78.
  • [10] ZENKOVA C.YU., GORSKY M.P., RYABIY P.A., Pseudo-phase mapping of speckle fields using 2D Hilbert transformation, Optica Applicata 46(1), 2016, pp. 153–162, DOI:10.5277/oa160114.
  • [11] ZENKOVA C.YU., GORSKY M.P., SOLTYS I.V., ANGELSKY P.O., Use of motion peculiarities of test particles for estimating degree of coherence of optical fields, Ukrainian Journal of Physical Optics 13(4), 2012, pp. 183–195.
  • [12] ZENKOVA C.YU., Interconnection of polarization properties and coherence of optical fields, Applied Optics 53(10), 2014, pp. B43–B52, DOI:10.1364/AO.53.000B43.
  • [13] ZENKOVA C., SOLTYS I., ANGELSKY P., The use of motion peculiarities of particles of the Rayleigh light scattering mechanism for defining the coherence properties of optical fields, Optica Applicata 43(2) 2013, pp. 297–312, DOI:10.5277/oa130210.
  • [14] BYRNE G.D., PITTER M.C., ZHANG J., FALCONE F.H., STOLNIK S., SOMEKH M.G., Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles, Journalof Microscopy 231(1), 2008, pp. 168–179, DOI:10.1111/j.1365-2818.2008.02027.x.
  • [15] TUCHIN V., Optical Biomedical Diagnostics, Vol. 1, 2017 (in Russian).
  • [16] KUGEYKO M.M., SMUNYOV D.A., Determination of microphysical parameters of native erythrocyteson the results of measuring the optical characteristics of scattered radiation, Bulletin of Belarusian State University 1(2), 2016, p. 73 (in Russian).
  • [17] YURKIN M.A., Modelling of light scattering by blood cells using the discrete dipoles method, PhD Thesis, Novosibirsk, 2008 (in Russian).
  • [18] USHENKO A.G., ERMOLENKO S.B., BURKOVETS D.N., USHENKO Y.A., Polarization microstructure of laser radiation scattered by optically active biotissues, Optics and Spectroscopy 87, 1999, pp. 434–438.
  • [19] ANGELSKY O.V., USHENKO Y.A., DUBOLAZOV A.V., TELENHA O.YU., The interconnection between the coordinate distribution of Mueller-matrixes images characteristic values of biological liquid crystals net and the pathological changes of human tissues, Advances in Optical Technologies, Vol. 2010, 2010, article ID 130659, DOI:10.1155/2010/130659.
  • [20] GU M., KURIAKOSE S., GAN X., A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes, Optics Express 15(3), 2007, pp. 1369–1375, DOI:10.1364/OE.15.001369.
  • [21] HAYAT A., BALTHASAR MUELLER J.P., CAPASSO F., Lateral chirality-sorting optical forces, PNAS Early Edition 112(43), 2015, pp. 13190–13194, DOI:10.1073/pnas.1516704112.
  • [22] ANGELSKY O.V., HANSON S.G., MAKSIMYAK P.P., MAKSIMYAK A.P., ZENKOVA C.YU., POLYANSKII P.V., IVANSKYI D.I., Influence of evanescent wave on birefringent microplates, Optics Express 25(3), 2017,pp. 2299–2311, DOI:10.1364/OE.25.002299.
  • [23] BLIOKH K.Y., BEKSHAEV A.Y., NORI F., Dual electromagnetism: helicity, spin, momentum, and angular momentum, New Journal of Physics 15(3), 2013, article ID 033026, DOI:10.1088/1367-2630/15/3/033026.
  • [24] ANTOGNOZZI M., BERMINGHAM C.R., HARNIMAN R.L., SIMPSON S., SENIOR J., HOERBER H., DENNIS M.R., BEKSHAEV A.YA., BLIOKH K. Y., NORI F., Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever, Nature Physics 12, 2016, pp. 731–735, DOI:10.1038/nphys3732.
  • [25] ZENKOVA C.YU., IVANSKYI D.I., KIYASHCHUK T.V., Optical torques and forces in birefringent microplate, Optica Applicata 47(3), 2017, pp. 483–493, DOI:10.5277/oa170313.
  • [26] ZENKOVA C.YU., IVANSKYI D.I., Non-trivial structure of optical momentum and optical forces inherent in evanescent waves, Proceedings of SPIE 10612, 2018, article ID 1061207, DOI:10.1117/12.2303555.
  • [27] BEKSHAEV A.YA., ANGELSKY O.V., SVIRIDOVA S.V., ZENKOVA C.YU., Mechanical action of inhomo-geneously polarized optical fields and detection of the internal energy flows, Advances in Optical Technologies, Vol. 2011, 2011, article ID 723901, DOI:10.1155/2011/723901.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-415f9e3d-fb8b-4363-a9e3-0c29a72a5a22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.