PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Submarine Resistance Force Characteristics Determination After Modification of Depth Rudder System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A submarine, as a technical object, has many systems which are necessary for operation. In addition to the weapon systems, there are many systems required for the safe operation under the water. The submarine steering system is one of them. The article presents the principle of operation and the modification concept of the stern rudders of the project 207 (Kobben class) submarine. On the basis of measurements, the resistance force characteristics were determined. A calculation model was proposed using CFD (Computational Fluid Dynamics) and CAE (Computer Aided Engineering) techniques to determine the resistance force characteristics during the design stage. Then, the measured resistance force characteristics were used to verify the calculation model. Using the proposed method, the resistance force characteristics for an existing submarine were determined, and then its modification was proposed. The simulation results for the modified rudder design allowed determining the reduction of the ship resistance force for the new solution. Lower resistance force means lower demand for electrical power in the engine room, which consequently affects the operational safety by increasing maneuverability and improving the immersion curve. The proposed modification enables to reduce the power consumption by about 8 kW and reduced the resistance force by 2%, which increased the ship’s autonomy.
Twórcy
  • Polish Naval Academy, Mechanical and Electrical Engineering Faculty, Gdynia, Poland
  • Polish Naval Academy, Mechanical and Electrical Engineering Faculty, Gdynia, Poland
Bibliografia
  • 1. Chen, C.; Lin, T.-Y.; Chen, B.-Y.; Kouh, J.-S. Parametric design and optimization of a pivoting S-Type rudder for containerships.; 2018.
  • 2. Kim, J.-H.; Choi, J.-E.; Choi, B.-J.; Chung, S.-H.; Seo, H.-W. Development of energy-saving devices for a full slow-speed ship through improving propulsion performance. International Journal of Naval Architecture and Ocean Engineering 2015, 7, 390–398, doi:10.1515/ijnaoe-2015–0027.
  • 3. Park, S.; Oh, G.; Hyung Rhee, S.; Koo, B.-Y.; Lee, H. Full scale wake prediction of an energy saving device by using computational fluid dynamics. Ocean Engineering 2015, 101, 254–263, doi:10.1016/j.oceaneng.2015.04.005.
  • 4. Marine Propellers and Propulsion; Elsevier, 2012; ISBN 978–0-08–097123–0.
  • 5. Charchalis A. Opory okrętów wojennych i pędniki okrętowe (Resistance force of warships and ship propellers – in Polish); Akademia Marynarki Wojennej im. Bohaterów Westerplatte: Gdynia, 2001;
  • 6. Terziev, M.; Tezdogan, T.; Oguz, E.; Gourlay, T.; Demirel, Y.K.; Incecik, A. Numerical investigation of the behaviour and performance of ships advancing through restricted shallow waters. Journal of Fluids and Structures 2018, 76, 185–215, doi:10.1016/j.jfluidstructs.2017.10.003.
  • 7. Mironiuk, W. Model-based investigations on dynamic ship heels in relation to maritime transport safety. Archives of Transport 2015, Vol. 33, iss. 1.
  • 8. Jarosz A. Ship Model Pools; Wydawnictwo Morskie: Gdańsk, 1977;
  • 9. Poland, Germany to Form Joint Submarine Command Available online: https://www.executivegov. com/2016/06/poland-germany-to-form-joint-submarine-command/ (accessed on May 31, 2020).
  • 10. Gołąbek I., Sobociński W. Opis techniczny okrętu podwodnego typu Kobben (Technical description of the Kobben class submarine – in Polish); Dywizjon Okrętów Podwodnych: Gdynia, 2003;
  • 11. Bolkowski S. Elektrotechnika, Podręcznik (Electrotechnics, Coursebook (in Polish). Wydawinctwo Szkolne i Pedagogiczne, 2019.
  • 12. Teoria okrętów podwodnych [Submarine Theory – in Polish]; Polish DoD: Gdynia, 1965;
  • 13. Park, J.-Y.; Kim, N. Design of a safety operational envelope protection system for a submarine. Ocean Engineering 2018, 148, 602–611, doi:10.1016/j. oceaneng.2017.11.016.
  • 14. Pan, Y.; Zhang, H.; Zhou, Q. Numerical prediction of submarine hydrodynamic coefficients using CFD simulation. Journal of Hydrodynamics, Ser. B 2012, 24, 840–847, doi:10.1016/ S1001–6058(11)60311–9.
  • 15. Krata, P.; Montewka, J. Assessment of a critical area for a give-way ship in a collision encounter. Archives of Transport 2015, 34(2).
  • 16. Kierowanie okrętami podwodnymi [Commanding of Submarines – in Polish]; Polish DoD, 1965;
  • 17. Kiciński R. Okręt podwodny i jego stery. Przegląd Sił Zbrojnych 2020.
  • 18. The Effect Analysis of Rudder between X-Form and Cross-Form. In: Proceedings of the 2017 3rd International Conference on Computational Systems and Communications (ICCSC 2017); Clausius Scientific Press Inc., 2017.
  • 19. Lozia, Z.; Kardas-Cinal, E. The use of a linear half-vehicle model for the optimization of damping in the passive suspension system of a railway car. Archives of Transport 2016, 39(3), doi:10.5604/08669546.1225448.
  • 20. Szturomski, B. Inżynierskie zastosowanie MES w problemach mechaniki ciała stałego na przykładzie programu ABAQUS [Engineering application of FEM in problems of solid mechanics on the example of the ABAQUS program – available in Polish]; Wydawnictwo Akademickie AMW: Gdynia, 2013;
  • 21. Abaqus 6.14 Theory Manual; Simulia, Dassault Systems, 2014;
  • 22. Kohnke, P. Ansys Theory Reference, Relase 5.6 1999.
  • 23.Jacyna, M.; Wasiak, M.; Lewczuk, K.; Kłodawski, M. Simulation model of transport system of Poland as a tool for developing sustainable transport. Archives of Transport 2014, 31(3), doi:10.5604/08669546.1146982.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-415a496e-2b98-4653-9e31-14ecea4bb998
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.