PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, Characterization and Some Biological Properties of PVA/PVP/PN Hydrogel Nanocomposites: Antibacterial and Biocompatibility

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, it was aimed to synthesize hydrogel based antibacterial, biocompatible and non-toxic wound dressing materials by solvent removal method usingpoly(vinylalcohol) (PVA), poly(vinylpyrolidone) (PVP) and nano pomegranate seed (PN).The morphology, swelling capacity, contact angle, antibacterial activity, biocompatibility and cytotoxicity of the synthesized films were determined. From the experimental findings, it was found that the PN particles were nano-sized, showed homogeneous and spherical distribution and improved the hydrophobic properties of the materials obtained by the addition of PN. And also, their swelling capacities were decreased with increased PN amount and all of the materials showed similar antibacterial activity, hemocompatibility and cytotoxicity.
Rocznik
Strony
32--45
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Balıkesir Karesi Martyr Prof. Dr. İlhanVarank Science and Arts Center-Balıkesir,Turkey
autor
  • Balıkesir Karesi Martyr Prof. Dr. İlhanVarank Science and Arts Center-Balıkesir,Turkey
autor
  • Balikesir University Science and Technology Application and Research Center, 10145-Çağış/Balikesir. Turkey
autor
  • Balıkesir University Faculty of Science and Literature Department of Molecular Biology and Genetics, 10145-Çağış/Balikesir, Turkey
  • Balikesir University Science and Technology Application and Research Center, 10145-Çağış/Balikesir. Turkey
autor
  • Balıkesir Karesi Martyr Prof. Dr. İlhanVarank Science and Arts Center-Balıkesir,Turkey
Bibliografia
  • 1. Mendez-Eastman, S. Wound dressing categories. Plastic Surgical Nursing, 25(2) (2005), 95-9.
  • 2. Değim, Z. Use of microparticulate systems to accelerate skin wound healing. Journal of Drug Targeting, 16(6) (2008), 437-48.
  • 3. Koyuturk, A. and Soyaslan, D. Yara ve Yanık Tedavisinde Kullanılan Örtüler. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(1) (2016), 58-65.
  • 4. Kamoun, E.A., Chen, X., Eldin, M.S.M., Kenawy, E.S. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arabian Journal of Chemistry, 8(1) (2015), 1-14.
  • 5. Kamoun, E.A., Kenawy, E.S., Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research, 8(3) (2017), 217-233.
  • 6. Zhao, X., Wu, H., Guo, B., Dong, R., Qiu, Y., Ma, P.X. Anti-bacterial antioxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 122 (2017), 34–47.
  • 7. Balakrishnan, B., Mohanty, M., Umashankar, P.R., Jayakrishnan, A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 26 (2005), 6335–42.
  • 8. Jones, A. and Vaughan, D. Hydrogel dressing in the management of a variety of wound types: A review. Journal of Orthopaedic Nursing, 9 (2005), 1-11.
  • 9. Oudadesse, H., Mostafa, A., Bui, X.V., Foad, E., Kamal, G., Legal, Y., Cathelineau, G. Physico-chemical assessment of biomimetic nano-hydroxyapatite/polymer matrix for use in bony surgery. International Journal of Biology and Biomedical Engineering, 5 (2011), 103-110.
  • 10. Liu, X., Xu, Y., Wu, Z., Chen, H. Poly(N-vinylpyrrolidone)-Modified surfaces for biomedical applications. Macromolecular Bioscience, 13(2) (2013), 147-154.
  • 11. Jones, D.S., Djokic, J., McCoy, C.P., Gorman, S.P. Poly(ε-caprolactone) and poly(ε-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro.Biomaterials, 23(23) (2002), 4449-4458.
  • 12. Morgan, C. and Nigam, Y. Naturally derived factors and their role in the promotion of angiogenesis for the healing of chronic wounds. Angiogenesis, 16(3) (2013), 493-502.
  • 13. Nema, N., Arjariya, S., Bairagi, S., Jha, M., Kharya, M. In Vivo Topical Wound Healing Activity of Punica Granatum Peel Extract on Rats. American Journal of Phytomedicine and Clinical Therapeutics, 1(2) (2013), 195-200.
  • 14. AlMatar, M., Var, I., Kayar, B., Eker, E., Kafkas, E., Zarifikhosroshahi, M., Köksal, F. Evaluation of Polyphenolic Profile and Antibacterial Activity of Pomegranate Juice in Combination with Rifampin (R) against MDR-TB Clinical Isolates. Current Pharmaceutical Biotechnology, 20(4) (2019), 317-326.
  • 15. Teodorescu, M., Morariu, S., Bercea, M., Săcărescu, L. Viscoelastic and structural properties of poly(vinylalcohol)/poly(vinylpyrrolidone) hydrogels. RSC Advances, 6(46) (2016), 39718-39727.
  • 16. Cheirmadurai, K., Thanikaivelan, P., Murali, R. Highly biocompatible collagen-Delonix regia seed polysaccharide hybrid scaffolds for antimicrobial wound dressing. Carbohydrate Polymers,137 (2016), 584-593.
  • 17. Diken, M.E., Doğan, S., Turhan, Y., Doğan, M. Biological properties of PMMA/nHAp and PMMA/3-APT-nHAp nanocomposites. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(13) (2018), 783-791.
  • 18. Wang, M.O., Etheridge, J.M., Thompson, J.A., Vorwald, C.E., Dean, D., Fisher, J.P. Evaluation of the in vitro cytotoxicity of cross-linked biomaterials. Biomacromolecules, 14(5) (2013), 1321-1329.
  • 19. Promega Corporation, www.Promega.Com/Protocols/, 12, (2012).
  • 20. Motlagh, D., Allen, J., Hoshi, R., Yang, J., Lui, K., Ameer, G. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. Journal of Biomedical Materials Research Part A, 82(4) (2007), 907-916.
  • 21. Yılmaz, B., Doğan, S., Çelikler Kasımoğulları, S. Hemocompatibility, cytotoxicity, and genotoxicity of poly(methylmethacrylate)/nanohydroxyapatite nanocomposites synthesized by melt blending method. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(6) (2018), 351-360.
  • 22. Baniani, D.D., Bagh eri, R., Solouk, A. Preparation and characterization of a composite biomaterial including starch micro/nano particles loaded chitosan gel. Carbohydrate Polymers, 174 (2017), 633-645.
  • 23. Kurtoğlu, A.H. and Karataş, A. Yara Tedavisinde Güncel Yaklaşımlar: Modern Yara Örtüleri. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 38(3) (2009), 211-232.
  • 24. Zuo, B., Hu, Y., Lu, X., Zhang, S., Fan, H., Wang, X. Surface properties of poly (vinyl alcohol) films dominated by spontaneous adsorption of ethanol and governed by hydrogen bonding. The Journal of Physical Chemistry C, 117(7) (2013), 3396-3406.
  • 25. Bhavsar, V. and Tripathi, D. Structural, optical, and aging studies of biocompatible PVC-PVP blend films. Journal of Polymer Engineering, 38(5) (2017), 1-8.
  • 26. Mei, Y., Saha, K., Bogatyrev, S.R., Yang, J., Hook, A.L., Kalcioglu, Z.I., Cho, S.-W., Mitalipova, M., Pyzocha, N., Rojas, F., Vliet, K.J.V., Davies, M.C., Alexander, M.R., Langer, R., Jaenisch, R., Anderson, D.G. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Materials, 9 (2010), 768–778.
  • 27. Lydon, M.J., Minett, T.W., Tighe, B.J. C ellular interactions with synthetic polymer surfaces in culture. Biomaterials, 6 (1985), 396-402.
  • 28. Fitton, J.H., Dalton, B.A., Beumer, G., Johnson, G., Griesser, H.J., Steele, J.G. Surface topography can interfere with epithelial tissue migration. Journal of Biomedical Materials Research, 42(2) (1998), 245-257.
  • 29. Xu, K., Wang, J., Chen, Q., Yue, Y., Zhang, W., Wang, P. Spontaneous volume transition of polyampholyte nanocomposite hydrogels based on pure electrostatic interaction. Journal of Colloid and Interface Science, 321 (2008), 272-278.
  • 30. Liu, H., Adhikari, R., Guo, Q., Adhikari, B. Preparation and characterization of glycerol plasticized (high-amylose) starch-chitosan films. Journal of Food Engineering, 116 (2013), 588-597.
  • 31. Sriamornsak, P. and Kennedy, R.A. Swelling and diffusion studies of calcium polysaccharide gels intended for film coating. International Journal of Pharmaceutics, 358(1-2) (2008), 205-213.
  • 32. Gyenes, T., Torma, V., Gyarmati, B., Zrínyi, M. Synthesis and swelling properties sensitive poly(aspartic acid) gels. Acta Biomaterialia, 4(3) (2008), 733-744.
  • 33. Yin, Y., Ji, X., Dong, H., Ying, Y., Zheng, H. Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginate-g-acrylic acid. Carbohydrate Polymers, 71 (2008), 682-689.
  • 34. Budtova, T. and Navard, P. Swelling Kinetics of a Polyelectrolyte Gel in Water and Salt Solutions. Coexistence of Swollen and Collapsed Phases. Macromolecules, 31(25) (1998), 8845-8850.
  • 35. Harle, S., Korhonen, A., Kettunen, J.A., Seitsalo, S. A randomised clinical trial of two different wound dressing materials (2005), 205-210.
  • 36. Vogt, P.M., Andree, C., Breuing, K., Liu, P.Y., Slama, J., Helo, G. and Eriksson, E. Dry, moist, and wet skin wound repair. Annals of Plastic Surgery, 34(5) (1995), 493-500.
  • 37. Merei, J.M. Pediatric clean surgical wounds: is dressing necessary? Journal of Pediatric Surgery, 39(12) (2004), 1871-1873.
  • 38. Kausar, A. Polymer/Silver Nanoparticle Nanocomposite as Antimicrobial Materials. Frontiers in Science, 7(2) (2017), 31-35.
  • 39. Sharma, A., Flores-Vallejo, R.D.C., Cardoso-Taketa, A. and Villarreal, M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. The Journal of Ethnopharmacology, 208 (2017), 264-329.
  • 40. Shanthini, G.M., Martin, C.A., Sakthivel, N., Veerla, S.C., Elayaraja, K., Lakshmi, B.S., Asokan,K., Kanjilal, D. and Kalkura, S.N. Physical and biological properties of the ion beam irradiated PMMA-based composite films. Applied Surface Science, 329 (2015), 116-126.
  • 41. Navarro, M., Amigo-Benavent, M., Mesias, M., Baeza, G., Gökmen, V., Bravo, L. and Morales, F.J. An aqueous pomegranate seed extract ameliorates oxidative stress of human hepatoma HepG2 cells. Journal of the Science of Food and Agriculture, 94(8) (2014), 1622-1627.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4158ac1c-a943-4d46-814f-07530867cadf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.