Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
To investigate the existence of higher-order intermodal entanglement, higher-order single-mode antibunching, higher-order intermodal antibunching and spin squeezing, a first order analytic operator solution of the Hamiltonian of quadratically-coupled optomechanical system is constructed using short time approximation for different field modes. Temporal variations of these nonclassical properties under different coupling strengths are studied, neglecting the effect of optical losses, environmental effects and also dissipation. With an increasing order number, the depth of these nonclassical properties is increased. Spin squeezed states are observed in any direction, i.e., either in Sx or Sy direction.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
651--663
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
- Department of Physics and Technophysics, Vidyasagar University, Midnapore, 721102, India
- Department of Physics, Government General Degree College, Gopiballavpur-II, 721517, India
autor
- Department of Physics and Technophysics, Vidyasagar University, Midnapore, 721102, India
Bibliografia
- [1] FURUSAWA A., SØRENSEN J.L., BRAUNSTEIN S.L., FUCHS C.A., KIMBLE H.J., POLZIK E.S., Unconditional quantum teleportation, Science 282(5389), 1998, pp. 706–709.
- [2] HILLERY M., Quantum cryptography with squeeze state, Physical Review A 61(2), 2000, article ID 022309.
- [3] BRAUNSTEIN S.L., KIMBLE H.J., Dense coding for continuous variables, Physical Review A 61(4), 2000, article ID 042302.
- [4] STANNIGEL K., RABL P., SØRENSEN A.S., ZOLLER P., LUKIN M.D., Optomechanical transducers for long-distance quantum communication, Physical Review Letters 105(22), 2010, article ID 220501.
- [5] KEYE ZHANG, BARIANI F., YING DONG, WEIPING ZHANG, MEYSTRE P., Proposal for an optomechanical microwave sensor at the subphoton level, Physical Review Letters 114(11), 2015, article ID 113601.
- [6] WEIS S., RIVIÈRE R., DELÉGLISE S., GAVARTIN E., ARCIZET O., SCHLIESSER A., KIPPENBERG T.J., Optomechanically induced transparency, Science 330(6010), 2010, pp. 1520–1523.
- [7] TEUFEL J.D., DALE LI, ALLMAN M.S., CICAK K., SIROIS A.J., WHITTAKER J.D., SIMMONDS R.W., Circuit cavity electromechanics in the strong-coupling regime, Nature 471(7337), 2011, pp. 204–208.
- [8] CAVES C.M., THORNE K.S., DREVER R.W.P., SANDBERG V.D., ZIMMERMANN M., On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle, Reviews of Modern Physics 52(2), 1980, p. 341.
- [9] ASPELMEYER M., KIPPENBERG T.J., MARQUARDT F., Cavity optomechanics, Reviews of Modern Physics 86(4), 2014, p. 1391.
- [10] NGUYEN BA AN, Multimode higher-order antibunching and squeezing in trio coherent state, Journal of Optics B: Quantum and Semiclassical Optics 4(3), 2002, pp. 222–227.
- [11] AVENHAUS M., LAIHO K., CHEKHOVA M.V., SILBERHORN C., Accessing higher order correlations in quantum optical states by time multiplexing, Physical Review Letters 104(6), 2010, article ID 063602.
- [12] ALLEVI A., OLIVARES S., BONDANI M., Measuring higher-order photon-number correlation in experiments with multimode pulsed quantum states, Physical Review A 85(6), 2012, article ID 063835.
- [13] ZHILIANG YUAN, KARDYNAL B.E., STEVENSON R.M., SHIELDS A.J., LOBO C.J., COOPER K., BEATTIE N.S., RITCHIE D.A., PEPPER M., Electrically driven single-photon source, Science 295(5552), 2002, pp. 102–105.
- [14] BRAUNSTEIN S.L., KIMBLE H.J., Teleportation of continuous quantum variables, Physical Review Letters 80(4), 1998, p. 869.
- [15] CAVES C.M., Quantum-mechanical noise in an interferometer, Physical Review D 23(8), 1981, pp. 1693–1708.
- [16] JIAN MA, XIAOGUANG WANG, SUN C.P., NORI F., Quantum spin squeezing, Physics Reports 509(2–3), 2011, pp. 89–165.
- [17] HALD J., SØRENSEN J.L., SCHORI C., PLOZIK E.S., Spin squeezed atoms: a macroscopic entangled ensemble created by light, Physical Review Letters 83(7), 1999, p. 1319.
- [18] SØRENSEN A., DUAN L.-M., CIRAC J.I., ZOLLER P., Many-particle entanglement with Bose–Einstein condensates, Nature 409(6816), 2001, pp. 63–66.
- [19] WALLS D.F., ZOLLER P., Reduced quantum fluctuations in resonance fluorescence, Physical Review Letters 47(10), 1981, p. 709.
- [20] WINELAND D.J., BOLINGER J.J., ITANO W.M., HEINZEN D.J., Squeezed atomic states and projection noise in spectroscopy, Physical Review A 50(1), 1994, pp. 67–88.
- [21] PATERNOSTRO M., VITALI D., GIGAN S., KIM M.S., BRUKNER C., EISERT J., ASPELMEYER M., Creating and probing multipartite macroscopic entanglement with light, Physical Review Letters 99(25), 2007, article ID 250401.
- [22] NUNNENKAMP A., BØRKJE K., HARRIS J.G.E., GIRVIN S.M., Colling and squeezing via quadratic optomechanical coupling, Physical Review A 82(2), 2010, article ID 021806(R).
- [23] SHI H., BHATTACHARYA M., Quantum mechanical study of a generic quadratically coupled optomechanical system, Physical Review A 87(4), 2013, article ID 043829.
- [24] SINGH S., PHELPS G.A., GOLDBAUM D.S., WRIGHT E.M., MEYSTRE P., All-optical optomechanics: an optical spring mirror, Physical Review Letters 105(21), 2010, article ID 213602.
- [25] GIESELER J., DEUTSCH B., QUIDANT R., NOVOTNY L., Subkelvin parametric feedback cooling of a laser-trapped nanoparticle, Physical Review Letters 109(10), 2012, article ID 103603.
- [26] SANKEY J.C., YANG C., ZWICKL B.M., JAYICH A.M., HARRIS J.G.E., Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nature Physics 6(9), 2010, pp. 707–712.
- [27] FLOWERS-JACOBS N.E., HOCH S.W., SANKEY J.C., KASHKANOVA A., JAYICH A.M., DEUTSCH C., REICHEL J., HARRIS J.G.E., Fiber-cavity-based optomechanical device, Applied Physics Letters 101(22), 2012, article ID 221109.
- [28] HAO-KUN LI, YONG-CHUN LIU, XU YI, CHANG-LING ZOU, XUE-XIN REN, YUN-FENG XIAO, Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling, Physical Review A 85(5), 2012, article ID 053832.
- [29] THOMPSON J.D., ZWICKL B.M., JAYICH A.M., MARQUARDT F., GIRVIN S.M., HARRIS J.G.E., Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature 452(7183), 2008, pp. 72–75.
- [30] CHEUNG H.K., LAW C.K., Nonadiabatic optomechanical Hamiltonian of a moving dielectric membrane in a cavity, Physical Review A 84(2), 2011, article ID 023812.
- [31] MUKHERJEE K., JANA P.C., Squeezing and entanglement in quadratically-coupled optomechanical system, Journal of Physical Sciences 19, 2014, pp. 143–155.
- [32] BOSE S., JACOBS K., KNIGHT P.L., Preparation of nonclassical states in cavities with a moving mirror, Physical Review A 56(5), 1997, p. 4175.
- [33] RAI A., AGARWAL G.S., Quantum optical spring, Physical Review A 78(1), 2008, article ID 013831.
- [34] MUKHERJEE K., JANA P.C., Nonclassical properties (squeezing, antibunching, entanglement) for couple-cavity optomechanical system, Journal of Optics 016, 2016, article ID 0339.
- [35] HILLERY M., ZUBAIRY M.S., Entanglement conditions for two-mode states, Physical Review Letters 96(5), 2006, article ID 050503.
- [36] HILLERY M., ZUBAIRY M.S., Entanglement conditions for two-mode states: applications, Physical Review A 74(3), 2006, article ID 032333.
- [37] MIRANOWICZ A., BARTKOWIAK M., XIAOGUANG WANG, YU-XI LIU, NORI F., Testing nonclassicality in multimode fields: a unified derivation of classical inequalities, Physical Review A 82(1), 2010, article ID 013824.
- [38] CHING TSUNG LEE, Higher-order criteria for nonclassical effects in photon statistics, Physical Review A 41(3), 1990, p. 1721.
- [39] KITAGAWA M., UEDA M., Squeezed spin states, Physical Review A 47(6), 1993, p. 5138.
- [40] WÓDKIEWICZ K., Reduced quantum fluctuations in the Josephson junction, Physical Review B 32(7), 1985, p. 4750.
- [41] SAKURAI J.J., Modern Quantun Mechanics, Pearson, 2013.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41578368-038a-46cf-8c44-ae7186c2911d