PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fault diagnosis of imbalance and misalignment in rotor-bearing systems using deep learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rotor-bearing systems are important components of rotating machinery and transmission systems, and imbalance and misalignment are inevitable in such systems. At present, the main challenges faced by state-of-the-art fault diagnosis methods involve the extraction of fault features under strong background noise and the classification of different fault modes. In this paper, a fault diagnosis method based on an improved deep residual shrinkage network (IDRSN) is proposed with the aim of achieving end-to-end fault diagnosis of a rotor-bearing system. First, a method called wavelet threshold denoising and variational mode decomposition (WTD-VMD) is proposed, which can proces original noisy signals into intrinsic mode functions (IMFs) with a salient feature. These one-dimensional IMFs are then transformed into two-dimensional images using a Gramian angular field (GAF) to give datasets for the deep residual shrinkage network (DRSN), which can achieve high levels of accuracy under strong background noise. Finally, a comprehensive test platform for a rotor-bearing system is built to verify the effectiveness of the proposed method in the field. The true test accuracy of the model at a 95% confidence interval is found to range from 84.09% to 86.51%. The proposed model exhibits good robustness when dealing with noisy samples and gives the best classification results for fault diagnosis under misalignment, with a test accuracy of 100%. It also achieves a higher testing accuracy compared to fault diagnosis methods based on convolutional neural networks and deep residual networks without improvement. In summary, IDRSN has significant value for deep learning engineering applications involving the fault diagnosis of rotor-bearing systems.
Rocznik
Tom
Strony
102--113
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Huazhong University of Science and Technology, School of Naval Architecture and Ocean Engineering, China
autor
  • Huazhong University of Science and Technology, School of Naval Architecture and Ocean Engineering, China
autor
  • School of Automobile and Traffic Engineering, Wuhan University of Science and Technology, China
autor
  • Huazhong University of Science and Technology, School of Naval Architecture and Ocean Engineering, China
autor
  • Huazhong University of Science and Technology, School of Naval Architecture and Ocean Engineering, China
Bibliografia
  • 1. L. Murawski, “Identification of shaft line alignment with insufficient data availability,” Polish Maritime Research, vol. 16, pp. 35-42, 2009.
  • 2. A. Ursolov, Y. Batrak and W. Tarelko, “Application of the optimization methods to the search of marine propulsion shafting global equilibrium in running condition,” Polish Maritime Research, vol. 26, pp. 172-180, 2019.
  • 3. E. B. Donald and T. H. Charles, “Fundamentals of rotating machinery diagnostics,” American Society of Mechanical Engineers, New York, 2002.
  • 4. J. L. Perez-Ruiz, Y. Tang and I. Loboda, “Aircraft engine gas-path monitoring and diagnostics framework based on a hybrid fault recognition approach,” Aerospace, vol. 8, 2021.
  • 5. L. Bechou, L. Angrisiani, Y. Ousten, D. Dallet, H. Levi, P. Daponte, and Y. Danto, “Localization of defects in die-attach assembly by continuous wavelet transform using scanning acoustic microscopy,” Microelectronics Reliability, vol. 39, pp. 1095-1101, 1999.
  • 6. M. E. Moreno-Sanchez, J. A. Villarraga-Ossa and R. Moreno-Sanchez, “Diagnostico de fallas tempranas de rodamientos en mecanismos susceptibles al desbalanceo y a la desalineacion,” Revista UIS Ingenierias, vol. 18, pp. 187-198, 2019.
  • 7. R. G. Desavale, “Dynamics characteristics and diagnosis of a rotor-bearing’s system through a dimensional analysis approach an experimental study,” Journal of Computational and Nonlinear Dynamics, vol. 14, 2018.
  • 8. H. Talhaoui, A. Menacer, A. Kessal, and A. Tarek, “Experimental diagnosis of broken rotor bars fault in induction machine based on Hilbert and discrete wavelet transforms,” International Journal of Advanced Manufacturing Technology, vol. 95, pp. 1399-1408, 2018.
  • 9. O. C. Kalay, O. Dogan, C. Yuce, and F. Karpat, “Effects of tooth root cracks on vibration and dynamic transmission error responses of asymmetric gears: A comparative study,” Mechanics Based Design of Structures and Machines, 2023.
  • 10. J. L. Liu, Z. Gu and S. Y. Liu, “Research on MDO of ship propulsion shafting dynamics considering the coupling effect of a propeller-shafting-hull system,” Polish Maritime Research, vol. 30, pp. 86-97, 2023.
  • 11. O. Janssens, V. Slavkovikj, B. Vervisch, K. Stockman, M. Loccufier, S. Verstockt, R. Van de Walle, and S. Van Hoecke, “Convolutional neural network based fault detection for rotating machinery,” Journal of Sound and Vibration, vol. 377, pp. 331-345, 2016.
  • 12. Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,”Nature, vol. 521, pp. 436-444, 2015.
  • 13. D. Hoang and H. Kang, “Rolling element bearing fault diagnosis using convolutional neural network and vibration image,” Cognitive Systems Research, vol. 53, pp. 42-50, 2019.
  • 14. K. Bousbai, J. Morales-Sanchez, M. Merah, and J. L. Sancho-Gomez, “Improving hand gestures recognition capabilities by ensembling convolutional networks,” Expert Systems, vol. 39, 2022.
  • 15. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR, 2016.
  • 16. M. Shafiq and Z. Q. Gu, “Deep Residual Learning For Image Recognition: A Survey,” Applied Sciences-Basel, vol. 12, 2022.
  • 17. S. Tang, S. Yuan and Y. Zhu, “Deep learning-based intelligent fault diagnosis methods toward rotating machinery,” IEEE Access, vol. 8, pp. 9335-9346, 2020.
  • 18. M. Zhao, S. Zhong, X. Fu, B. Tang, and M. Pecht, “Deep residual shrinkage networks for fault diagnosis,” IEEE Transactions on Industrial Informatics, vol. 16, pp. 4681-4690, 2020.
  • 19. M. Bach-Andersen, B. Romer-Odgaard and O. Winther, “Deep learning for automated drivetrain fault detection,”Wind Energy, vol. 21, pp. 29-41, 2018-01-01 2018.
  • 20. P. Kumar and A. S. Hati, “Transfer learning-based deep CNN model for multiple faults detection in SCIM,” Neural Computing & Applications, vol. 33, pp. 15851-15862, 2021.
  • 21. Y. X. Huangfu, E. Seddik, S. Habibi, A. Wassyng, and J. Tjong, “Fault detection and diagnosis of engine spark plugs using deep learning techniques,” SAE International Journal Of Engines, vol. 15, pp. 515-525, 2022.
  • 22. D. H. Lim and K. S. Kim, “Development of deep learningbased detection technology for vortex-induced vibration of a ship’s propeller,” Journal of Sound and Vibration, vol. 520, p. 116629, 2022.
  • 23. A. Glaeser, V. Selvaraj, S. Lee, Y. Hwang, K. Lee, N. Lee, S. Lee, and S. Min, “Applications of deep learning for fault detection in industrial cold forging,” International Journal Of Production Research, vol. 59, pp. 4826-4835, 2021.
  • 24. Z. Korczewski and K. Marszalkowski, “Energy analysis of propulsion shaft fatigue process in rotating mechanical system Part I: Testing significance of influence of shaft material fatigue excitation parameters,” Polish Maritime Research, vol. 25, pp. 211-217, 2018.
  • 25. D. L. Donoho, “De-noising by soft-thresholding,” IEEE Transactions on Information Theory, vol. 41, pp. 613-627, 1995.
  • 26. K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,” IEEE Transactions on Signal Processing, vol. 62, pp. 531-544, 2014.
  • 27. Z. Wang and T. Oates, “Imaging time-series to improve classification and imputation,” in IJCAI, 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4155c158-af80-481b-9510-da8d7a30d704
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.