Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose Geopolymers are modern, inorganic aluminosilicate materials that, through their high mechanical properties, are used in many industries and can be an excellent alternative to Portland cement-based concrete. The study aims to determine the effect of adding microsilica on the properties of geopolymer composites. Design/methodology/approach Reference samples were made by mixing pozzolanic material such as fly ash (50 wt.%) with sand (50% wt.%). The effect of the additive was analysed by introducing microsilica (T180) into the material in shares of 5%, 10% and 15% by weight, each time replacing part of the fly ash with microsilica. The samples were activated with a 10 M sodium hydroxide solution mixed with an aqueous sodium silicate solution. Laser particle size analysis, mineralogical analysis and SEM observations were carried out on the raw materials. Phase identification analysis, SEM observations, density tests, compressive and flexural strength tests, water absorption and thermal conductivity tests were carried out on the produced geopolymer composites. Findings The results obtained based on the compressive strength test showed that the strength of the material decreases with the increase of the silica content in the material. Increasing the silica addition by each subsequent 5% resulted in a decrease in strength of about 20-30%—addition of silica at 5 wt.% resulted in a decrease in flexural strength compared to the reference sample of over 15%. However, adding 10% and 15% causes a decrease in flexural strength by more than 50% compared to the value for the reference sample. The thermal conductivity coefficient decreases with increasing silica content in the composite, which means introducing this additive improves the thermal insulation properties of geopolymer composites. Practical implications Adding microsilica introduced into the geopolymer matrix in 10% ensures a good correlation between thermal conductivity and strength. The compressive strength of this composite is over 25 MPa, which makes it a construction material with improved thermal insulation by approximately 15% compared to the reference material. The investigated materials are dedicated to application in the construction industry. Originality/value The article provides a new voice in a discussion connected with the role of microsilica in geopolymers because microsilica was not previously investigated as an additive for the fly ash used by the authors.
Wydawca
Rocznik
Tom
Strony
46--59
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Faculty of Civil Engineering, Nha Trang University Nguyen Dinh Chieu 2, Nha Trang 650000, Vietnam
autor
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
- [1] H.U. Ahmed, L.J. Mahmood, M.A. Muhammad, R.H. Faraj, S.M.A. Qaidi, N.H. Sor, A.S. Mohammed, A.A. Mohammed, Geopolymer concrete as a cleaner construction material: An overview on materials and structural performances, Cleaner Materials 5 (2022) 100111. DOI: https://doi.org/10.1016/j.clema.2022.100111
- [2] K. Korniejenko, B. Figiela, C. Ziejewska, J. Marczyk, P. Bazan, M. Hebda, M. Choińska, W.T. Lin, Fracture Behavior of Long Fiber Reinforced Geopolymer Composites at Different Operating Temperatures, Materials 15/2 (2022) 482. DOI: https://doi.org/10.3390/ma15020482
- [3] R.S. Krishna, J. Mishra, M. Zribi, F. Adeniyi, S. Saha, S. Baklouti, F.U. Ahmed Shaikh, H.S. Gökçe, A review on developments of environmentally friendly geopolymer technology, Materialia 20 (2021) 101212. DOI: https://doi.org/10.1016/j.mtla.2021.101212
- [4] A.B. Elhag, A. Raza, Q.Z. Khan, M. Abid, B. Masood, M. Arshad, A.F. Deifalla, A critical review on mechanical, durability, and microstructural properties of industrial by-product-based geopolymer composites, Reviews on Advanced Materials Science 62/1 (2023) 20220306. DOI: https://doi.org/10.1515/rams-2022-0306
- [5] T.V. Lam, M.H. Nguyen, Incorporating Industrial By-Products into Geopolymer Mortar: Effects on Strength and Durability, Materials 16/12 (2023) 4406. DOI: https://doi.org/10.3390/ma16124406
- [6] V.S. Le, V.V. Nguyen, A. Sharko, R. Ercoli, T.X. Nguyen, D.H. Tran, P. Łoś, K.E. Buczkowska, S. Mitura, T. Špirek, P. Louda, Fire Resistance of Geopolymer Foams Layered on Polystyrene Boards, Polymers 14/10 (2022) 1945. DOI: https://doi.org/10.3390/polym14101945
- [7] J. Mishra, B. Nanda, S.K. Patro, R.S. Krishna, Sustainable Fly Ash Based Geopolymer Binders: A Review on Compressive Strength and Microstructure Properties, Sustainability 14/22 (2022) 15062. DOI: https://doi.org/10.3390/su142215062
- [8] D. Mierzwiński, J. Walter, D. Wanat, Possibilities of Checking Water Content in Porous Geopolymer Materials Using Impedance Spectroscopy Methods, Materials 16/14 (2023) 5190. DOI: https://doi.org/10.3390/ma16145190
- [9] B. Kozub, J. Castro-Gomes, An investigation of the ground walnut shells’ addition effect on the properties of the fly ash-based geopolymer, Materials 15/11 (2022) 3936. DOI: https://doi.org/10.3390/ma15113936
- [10] A. Danish, T. Ozbakkaloglu, M.A. Mosaberpanah, M.U. Salim, M. Bayram, J.H. Yeon, K. Jafar, Sustainability benefits and commercialization challenges and strategies of geopolymer concrete: A review, Journal of Building Engineering 58 (2022) 105005. DOI: https://doi.org/10.1016/j.jobe.2022.105005
- [11] J. Marczyk, K. Pławecka, M. Hebdowska-Krupa, M. Nykiel, M. Łach, Research on diatomite from Polish deposits and the possibilities of its use, Journal of Achievements in Materials and Manufacturing Engineering 115/1 (2022) 5-15. DOI: https://doi.org/10.5604/01.3001.0016.2337
- [12] L.J.J. Nieves, F. Elyseu, S. Goulart, M. de Souza Pereira, E.Z. Valvassoir, A.M. Bernardin, Use of fly and bottom ashes from a thermoelectrical plant in the synthesis of geopolymers: Evaluation of reaction efficiency, Energy Geoscience 2/2 (2021) 167-173. DOI: https://doi.org/10.1016/j.engeos.2020.09.004
- [13] B.S. Thomas, J. Yang, A. Bahurudeen, S.N. Chinnu, J.A. Abdalla, R.A. Hawileh, H.M. Hamada, Geopolymer concrete incorporating recycled aggregates: A comprehensive review, Cleaner Materials 3 (2022) 1000056. DOI: https://doi.org/10.1016/j.clema.2022.100056
- [14] U. Sharma, A. Khatri, A. Kanoungo, Use of Microsilica as Additive to Concrete-state of Art, International Journal of Civil Engineering Research 5/1 (2014) 9-12.
- [15] H.U. Ahmed, A.S. Mohammed, R.H. Faraj, S.M.A. Qaidi, A.A. Mohammed, Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations, Case Studies in Construction Materials 16 (2022) e01036. DOI: https://doi.org/10.1016/j.cscm.2022.e01036
- [16] A.K. Chishi, L. Gautam, Sustainable use of silica fume in green cement concrete production: a review, Innovative Infrastructure Solutions 8 (2023) 195. DOI: https://doi.org/10.1007/s41062-023-01164-z
- [17] H.M. Hamada, F. Abed, H.Y. Binti Katman, A.M. Humada, M.S. Al Jawahery, A. Majdi, S.T. Yousif, B. Skariah Thomas, Effect of silica fume on the properties of sustainable cement concrete, Journal of Materials Research and Technology 24 (2023) 8887-8908. DOI: https://doi.org/10.1016/j.jmrt.2023.05.147
- [18] R.P. Singh, K.R. Vanapalli, V.R. Sankar Cheela, S.R. Peddireddy, H.B. Sharma, B. Mohanty, Fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates: Properties and environmental impacts, Construction and Building Materials 378 (2023) 131168. DOI: https://doi.org/10.1016/j.conbuildmat.2023.131168
- [19] M. Heikal, M.E.A. Zaki, S.M. Ibrahim, Preparation, physico-mechanical characteristics and durability of eco-alkali-activated binder from blast-furnace slag, cement kiln-by-pass dust and microsilica ternary system, Construction and Building Materials 260 (2020) 119947. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119947
- [20] H. Assaedi, T. Alomayri, F. Shaikh, I.M. Low, Influence of Nano Silica Particles on Durability of Flax Fabric Reinforced Geopolymer Composites, Materials 12/9 (2019) 1459. DOI: https://doi.org/10.3390/ma12091459
- [21] A.M. Rashad, Silica Fume as a Part of Precursor/An Additive, in: Silica Fume in Geopolymers, Springer Briefs in Applied Sciences and Technology, Springer, Cham, 2023, 9-83. DOI: https://doi.org/10.1007/978-3-031-33219-7_2
- [22] W. Chen, J. Li, Effects of Different Silicon Sources on the Properties of Geopolymer Planting Concrete Mixed with Red Mud, Sustainability 15/5 (2023) 4427. DOI: https://doi.org/10.3390/su15054427
- [23] F. Wang, X. Sun, Z. Tao, Z. Pan, Effect of silica fume on compressive strength of ultra-high-performance concrete made of calcium aluminate cement/fly ash based geopolymer, Journal of Building Engineering 62 (2022) 105398. DOI: https://doi.org/10.1016/j.jobe.2022.105398
- [24] F.N. Okoye, S. Prakash, N.B. Singh, Durability of fly ash based geopolymer concrete in the presence of silica fume, Journal of Cleaner Production 149 (2017) 1062-1067. DOI: https://doi.org/10.1016/j.jclepro.2017.02.176
- [25] O. Vogt, N. Ukrainczyk, E. Koenders, Effect of Silica Fume on Metakaolin Geopolymers’ Sulfuric Acid Resistance, Materials 14/18 (2021) 5396. DOI: https://doi.org/10.3390/ma14185396
- [26] W. Dai, Y. Wang, Silica fume enhances the mechanical strength of alkali-activated slag/fly ash pastes subjected to elevated temperatures, Fire 6/7 (2023) 252. DOI: https://doi.org/10.3390/fire6070252
- [27] Y. Zhang, H. Liu, T. Ma, G. Gu, C. Chen, J. Hu, Understanding the changes in engineering behaviors and microstructure of FA-GBFS based geopolymer paste with addition of silica fume, Journal of Building Engineering 70 (2023) 106450. DOI: https://doi.org/10.1016/j.jobe.2023.106450
- [28] J. Zhao, Y. Wang, Microstructure Evaluation of Fly Ash Geopolymers Alkali-Activated by Binary Composite Activators, Minerals 13/7 (2023) 910. DOI: https://doi.org/10.3390/min13070910
- [29] S. Wang, Y. Liang, D. Mo, C. Zhang, J. Xue, X. Song, Y. Wang, Doping Silica Fume Enhances the Mechanical Strength of Slag/Fly Ash Geopolymer Paste under Frost Attack, Minerals 13/7 (2023) 925. DOI: https://doi.org/10.3390/min13070925
- [30] B.O. Adaleke, J.M. Kinuthia, J. Oti, M. Ebailila, Physico-mechanical evaluation of geopolymer concrete activated by sodium hydroxide and silica fume-synthesised sodium silicate solution, Materials 16/6 (2023) 2400. DOI: https://doi.org/10.3390/ma16062400
- [31] M.F. Alnahhal, T. Kim, A. Hajimohammadi, Waste-derived activators for alkali-activated materials: a review, Cement and Concrete Composites 118 (2021) 103980. DOI: https://doi.org/10.1016/j.cemconcomp.2021.103980
- [32] D.Q. A’yuni, A. Subagio, H. Hadiyanto, A.C. Kumoro, M. Djaeni, Microstructure silica leached by NaOH from semi-burned rice husk ash for moisture adsorbent, Archives of Materials Science and Engineering 108/1 (2021) 5-15. DOI: https://doi.org/10.5604/01.3001.0015.0248
- [33] B. Kozub, K. Pławecka, B. Figiela, K. Korniejenko, Geopolymer fly ash composites modified with cotton fibre, Archives of Materials Science and Engineering 121/2 (2023) 60-70. DOI: https://doi.org/10.5604/01.3001.0053.8487
- [34] K. Korniejenko, K. Pławecka, A. Bulut, B. Şahin, G. Azizağaoğlu, B. Figiela, Development of lightweight geopolymer composites containing perlite and vermiculite, Journal of Achievements in Materials and Manufacturing Engineering 117/2 (2023) 49-56. DOI: https://doi.org/10.5604/01.3001.0053.6696
- [35] Q. Munir, M. Abdulkareem, M. Horttanainen, T.A. Kärki, A comparative cradle-to-gate life cycle assessment of geopolymer concrete produced from industrial side streams in comparison with traditional concrete, Science of The Total Environment 865 (2023) 161230. DOI: https://doi.org/10.1016/j.scitotenv.2022.161230
- [36] K. Pławecka, P. Bazan, W.-T. Lin, K. Korniejenko, M. Sitarz, M. Nykiel, Development of Geopolymers Based on Fly Ashes from Different Combustion Processes, Polymers 14/10 (2022) 1954. DOI: https://doi.org/10.3390/polym14101954
- [37] N. Arunachelam, J. Maheswaran, M. Chellapandian, G. Murali, N.I. Vatin, Development of High-Strength Geopolymer Concrete Incorporating High-Volume Copper Slag and Micro Silica, Sustainability 14/13 (2022) 7601. DOI: https://doi.org/10.3390/su14137601
- [38] K. Korniejenko, B. Figiela, B. Kozub, V. Azzopardi, M. Łach, Enviromental degradation of foamed geopolymers, Continuum Mechanics and Thermodynamics 54 (2022) 7601. DOI: https://doi.org/10.1007/s00161-022-01102-x
- [39] K. Korniejenko, M. Łach, J. Mikuła, The Influence of Short Coir, Glass and Carbon Fibers on the Properties of Composites with Geopolymer Matrix, Materials 14/16 (2021) 4599. DOI: https://doi.org/10.3390/ma14164599
- [40] Y. Jaradat, F. Matalkah, Effects of micro silica on the compressive strength and absorption characteristics of olive biomass ash-based geopolymer, Case Studies in Construction Materials 18 (2023) e01870. DOI: https://doi.org/10.1016/j.cscm.2023.e01870
- [41] S. Yaseri, G. Hajiaghaei, F. Mohammadi, R. Farokhzad, The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste, Construction and Building Materials 157 (2017) 534-545. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.102
- [42] P.J. De Temmerman, E. Van Doren, E. Verleysen, Y. Van der Stede, M.A.D. Francisco, J. Mast, Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy, Journal of Nanobiotechnology 10 (2012) 24. DOI: https://doi.org/10.1186/1477-3155-10-24
- [43] Z. Buliński, S. Pawlak, T. Krysiński, W. Adamczyk, R. Białecki, Application of the ASTM D5470 standard test method for thermal conductivity measurements of high thermal conductive materials, Journal of Achievements in Materials and Manufacturing Engineering 95/2 (2019) 57-63. DOI: https://doi.org/10.5604/01.3001.0013.7915
- [44] M. Kujawa, R. Suwak, L.A. Dobrzański, A. Gerle, B. Tomiczek, Thermal characterization of halloysite materials for porous ceramic preforms, Archives of Materials Science and Engineering 107/1 (2021) 5-15. DOI: https://doi.org/10.5604/01.3001.0014.8189
- [45] V.S. Le, A. Sharko, O. Sharko, D. Stepanchikov, R. Ercoli, T.X. Nguyen, D.H. Tran, K.E. Buczkowska, P. Dancova, P. Łos, P. Louda, Multi-criteria optimization of geopolymer foam composition, Journal of Materials Research and Technology 26 (2023) 9049-9062. DOI: https://doi.org/10.1016/j.jmrt.2023.09.199
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4154a0b9-238f-4f09-a775-e3b1d4eca954