PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and analytical approaches on air spring absorbers made of ldpe polymer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Damping and energy-consuming elements can be found in many technical applications. This means these component types can prevent fractures or injuries in the case of products or people, respectively. In the last time, many modern applications and inventions associated with the reduction of the effects of an impact are observed especially in the mode of transportation safety area. The significant development of the automotive industry, increasing popularity of motorbikes, electric bikes and scooters, sports field, etc., require new solutions for personal safety protection. Human head and neck protection, and other body parts protection are typical groups of solutions from biomechanics and mechanical engineering. Authors have investigated LDPE-made pneumatic absorbers under axial impact force. Based on the experimental approach and analytical model, mechanical characteristics are presented. Impact force value, deceleration and damping for different loading conditions are shown. Because safety systems’ impact protective features can be matched to impact conditions, results indicated that absorber damping could possibly be a good solution for them, shaping the impact characteristics according to safety requirements.
Rocznik
Strony
314--322
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Applied Mechanics, Poznań University of Technology, ul. Jana Pawła II 24, 60-965 Poznań, Poland
  • Institute of Applied Mechanics, Poznań University of Technology, ul. Jana Pawła II 24, 60-965 Poznań, Poland
  • Faculty of Mechanical Engineering, Poznań University of Technology, ul. Jana Pawła II 24, 60-965 Poznań, Poland
Bibliografia
  • 1. Kurpisz D, Obst M. The energetic and experimental based approach to description of basic material characteristics and mechanical prop-erties of selected polymers. Journal of Theoretical and Applied Me-chanics. 2020;58:183–93.
  • 2. Wegner T, Kurpisz D. An energy-based method in phenomenological description of me-chanical properties of nonlinear material under plane stress. Journal of Theoretical and Applied Mechanics. 2017;55:129–39.
  • 3. Khlif M, Masmoudi N, Bradai C. Polypropylene tensile test under dynamic loading. Journal of KONES Powertrain and Transport. 2014 Dec 28;21(1):131–8.
  • 4. Jordan JL, Siviour CR, Sunny G, Bramlette C, Spowart JE. Strain rate-dependant mechanical properties of OFHC copper. J Mater Sci. 2013 Oct;48(20):7134–41.
  • 5. Włodarczyk E, Janiszewski J. Dynamiczne stany naprężenia i skoń-czonego odkształcenia w metalowym cienkim pierścieniu rozszerza-nym wybuchowo. Biuletyn Wojskowej Akademii Technicznej. 2007;Vol. 56(nr 1):126–42.
  • 6. Clough EC, Plaisted TA, Eckel ZC, Cante K, Hundley JM, Schaedler TA. Elastomeric Microlattice Impact Attenuators. Matter. 2019 Dec;1(6):1519–31.
  • 7. Trzaskalska M, Chwastek R. Damping Properties and Density of Helmet Liners Made of Expanded Polystyrene (EPS). Archives of Metallurgy and Materials. 2021;66(1):339–44.
  • 8. Reyes A, Børvik T. Low velocity impact on crash components with steel skins and polymer foam cores. International Journal of Impact Engineering. 2019 Oct;132:103297.
  • 9. Koohbor B, Blourchian A, Uddin KZ, Youssef G. Characterization of Energy Absorption and Strain Rate Sensitivity of a Novel Elastomeric Polyurea Foam. Adv Eng Mater. 2021 Jan;23(1):2000797.
  • 10. Mizuno K, Ito D, Oida K, Kobayashi G, Han Y. Head protection with cyclist helmet in impact against vehicle A-pillar. International Journal of Crashworthiness. 2017 May 4;22(3):322–31.
  • 11. Raponi E, Fiumarella D. Experimental analysis and numerical optimi-zation of a thermoplastic composite in crashworthiness. IOP Conf Ser: Mater Sci Eng. 2021 Feb 1;1038(1):012030.
  • 12. Kathiresan M, Manisekar K, Manikandan V. Crashworthiness analy-sis of glass fibre/epoxy laminated thin walled composite conical frus-ta under axial compression. Composite Structures. 2014 Feb;108:584–99.
  • 13. Tarlochan F. Sandwich Structures for Energy Absorption Applica-tions: A Review. Materials. 2021 Aug 22;14(16):4731.
  • 14. Jabłońska MB, Śmiglewicz A, Niewielski G. The Effect Of Strain Rate On The Mechanical Properties And Microstructure Of The High-Mn Steel After Dynamic Deformation Tests. Archives of Metallurgy and Materials. 2015 Jun 1;60(2):577–80.
  • 15. Stankiewicz M, Popławski A, Bogusz P, Gieleta R, Sławiński G. Experimental Evaluation Of Energy Absorbing Properties Of Selected Elastomer Materials. Journal of KONES Powertrain and Transport. 2015 Jan 1;22(3):241–8.
  • 16. Liang W, Bonsu AO, Tang X, Lei Z, Yang B. Impact and CAI behav-ior of SGF mat filled sandwich panels made from foam core and FRP facesheet. Composites Communications. 2022 Jan;29:101000.
  • 17. Avalle M, Belingardi G. A Mechanical Model of Cellular Solids for Energy Absorption. Adv Eng Mater. 2019 Apr;21(4):1800457.
  • 18. Sun G, Li G, Hou S, Zhou S, Li W, Li Q. Crashworthiness design for functionally graded foam-filled thin-walled structures. Materials Sci-ence and Engineering: A. 2010 Mar;527(7–8):1911–9.
  • 19. Robinson MB, Stousland T, Baqui M, Karami G, Ziejewski M. Reduc-ing effect of softball-to-head impact by incorporating slip-surface in helmet. Procedia Engineering. 2011;13:415–21.
  • 20. Maw S, Lun V, Clarke A. The influence of helmet size and shape on peak linear decelerations when impacting crash pads. Procedia En-gineering. 2012;34:819–24.
  • 21. Lewis LM, Naunheim R, Standeven J, Lauryssen C, Richter C, Jeffords B. Do Football Helmets Reduce Acceleration of Impact in Blunt Head Injuries? Acad Emergency Med. 2001 Jun;8(6):604–9.
  • 22. Whyte T, Gibson T, Eager D, Milthorpe B. Response of a full-face motorcycle helmet FE model to the UNECE 22.05 chin bar impact test. International Journal of Crashworthiness. 2016 Nov;21(6):555–65.
  • 23. Ghajari M, Peldschus S, Galvanetto U, Iannucci L. Evaluation of the effective mass of the body for helmet impacts. International Journal of Crashworthiness. 2011 Dec;16(6):621–31.
  • 24. Wu JZ, Pan CS, Ronaghi M, Wimer BM, Reischl U. Application of polyethylene air-bubble cushions to improve the shock absorption performance of Type I construction helmets for repeated impacts. BME. 2021 Jan 21;32(1):1–14.
  • 25. Mazurek K, Szyguła M. Dynamic analysis of thin-walled structures as energy absorbers. MM. 2020 Jul 6;(162):2–12.
  • 26. Böhm R, Hornig A, Weber T, Grüber B, Gude M. Experimental and Numerical Impact Analysis of Automotive Bumper Brackets Made of 2D Triaxially Braided CFRP Composites. Materials. 2020 Aug 12;13(16):3554.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4151dd58-e721-4745-b53e-451dcd3de873
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.