Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we shall establish sufficient conditions for the existence of solutions for second order semilinear functional evolutions equation with nonlocal conditions in Fréchet spaces. Our approach is based on the concepts of Hausdorff measure, noncompactness and Tikhonoff’s fixed point theorem. We give an example for illustration.
Wydawca
Czasopismo
Rocznik
Tom
Strony
309--319
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- Laboratory of Mathematics, Djilali Liabes University of Sidi Bel-Abbes, PO Box 89, Sidi Bel-Abbes 22000, Algeria
autor
- Departamento de Analise Matematicá, Facultade de Matemticás, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
autor
- Laboratory of Mathematics, Djilali Liabes University of Sidi Bel-Abbes, PO Box 89, Sidi Bel-Abbes 22000, Algeria
Bibliografia
- [1] Ahmed N. U., Semigroup theory with applications to systems and control, Harlow John Wiley & Sons, Inc., New York, 1991
- [2] Wu J., Theory and application of partial functional differential equations, Springer-Verlag, New York, 1996
- [3] Abbas S., Benchohra M., Advanced functional evolution equations and inclusions, Springer, Cham, 2015
- [4] Fattorini H. O., Second order linear differential equations in Banach spaces, North-Holland Mathematics Studies, Vol. 108, North-Holland, Amsterdam, 1985
- [5] Travis C. C., Webb G. F., Second order differential equations in Banach spaces, in: Nonlinear Equations in Abstract Spaces, Proc. Internat. Sympos. (Univ. Texas, Arlington, TX, 1977), Academic Press, New-York, 1978, 331-361
- [6] Kozak M., A fundamental solution of a second-order differential equation in a Banach space, Univ. Iagel. Acta Math., 1995, 32, 275-289
- [7] Batty C. J. K., Chill R., Srivastava S., Maximal regularity for second order non-autonomous Cauchy problems, Studia Math., 2008, 189, 205-223
- [8] Benchohra M., Rezzoug N., Measure of noncompactness and second order evolution equations, Gulf J. Math., 2016, 4, 71-79
- [9] Faraci F., Iannizzotto A., A multiplicity theorem for a perturbed second-order non-autonomous system, Proc. Edinb. Math. Soc., 2006, 49, 267-275
- [10] Winiarska T., Evolution equations of second order with operator dependent on t, Sel. Probl. Math. Cracow Univ. Tech., 1995, 6, 299-314
- [11] Byszewski L., Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 1991, 162, 494-505
- [12] Byszewski L., Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem, Zesz. Nauk. Pol. Rzes. Mat. Fiz., 1993, 18, 109-112
- [13] Byszewski L., Akca H., Existence of solutions of a semilinear functional-differential evolution nonlocal problem, Nonlinear Anal., 1998, 34, 65-72
- [14] Byszewski L., Lakshmikantham V., Theorem about the existence and uniqueness of solutions of a nonlocal Cauchy problem in a Banach space, Appl. Anal., 1990, 40, 11-19
- [15] Aizicovici S., Mckibben M., Existence results for a class of abstract nonlocal Cauchy problems, Nonlinear Anal., 2000, 39, 649-668
- [16] Balachandran K., Ilamaran S., Existence and uniqueness of mild and strong solutions of a semilinear evolution equation with nonlocal condition, Indian J. Pure Appl. Math., 1994, 25, 411-418
- [17] Benchohra M., Ntouyas S. K., Nonlocal Cauchy problems for neutral functional differential and integrodierential inclusions in Banach spaces, J. Math. Anal. Appl., 2001, 258, 573-590
- [18] Benchohra M., Ntouyas S. K., Existence of mild solutions on noncompact intervals to second order initial value problems for a class of differential inclusions with nonlocal conditions, Comput. Math. Appl., 2000, 39, 11-18
- [19] Henríquez H., Poblete V., Pozo J., Mild solutions of non-autonomous second order problems with nonlocal initial conditions, J. Math. Anal. Appl., 2014, 412, 1064-1083
- [20] Xue X., Nonlinear differential equations with nonlocal conditions in Banach spaces, Nonlinear Anal., 2005, 63, 575-586
- [21] Xue X., Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces, Electron. J. Differential Equations, 2005, 64, 1-7
- [22] Akhmerov R. R., Kamenskii M. I., Patapov A. S., Rodkina A. E., Sadovskii B. N., Measures of noncompactness and condensing operators, Birkhauser Verlag, Basel, 1992
- [23] Alvárez J. C., Measure of noncompactness and xed points of nonexpansive condensing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur., Madrid, 1985, 79, 53-66
- [24] Banaś J., Goebel K., Measures of noncompactness in Banach spaces, Lecture Note in Pure App. Math., 60, Dekker, New York, 1980
- [25] Guo D., Lakshmikantham V., Liu X., Nonlinear integral equations in abstract spaces, Kluwer Academic Publishers Group, Dordrecht, 1996
- [26] Olszowy L., Solvability of some functional integral equation, Dynam. System. Appl., 2009, 18, 667-676
- [27] Olszowy L., Existence of mild solutions for semilinear nonlocal Cauchy problems in separable Banach spaces, Z. Anal. Anwend., 2013, 32, 215-232
- [28] Olszowy L., Existence of mild solutions for semilinear nonlocal problem in Banach spaces, Nonlinear Anal., 2013, 81, 211-223
- [29] Olszowy L., Wędrychowicz S., Mild solutions of semilinear evolution equation on an unbounded interval and their applications, Nonlinear Anal., 2010, 72, 2119-2126
- [30] Banaś J., Mursaleen M., Sequence spaces and measures of noncompactness with applications to differential and integral equations, Springer, New Delhi, 2014
- [31] Bothe D., Multivalued perturbation of m-accretive differential inclusion, Israel J. Math., 1998, 108, 109-138
- [32] Mönch H., Boundry value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 1980, 4, 985-999
- [33] Dugundji J., Granas A., Fixed point theory, Springer-Verlag, New York, 2003
- [34] Olszowy L., Wędrychowicz S., On the existence and asymptotic behaviour of solution of an evolution equation and an application to the Feynman-Kac theorem, Nonlinear Anal., 2011, 72, 6758-6769
- [35] Olszowy L., On existence of solutions of a quadratic Urysohn integral equation on an unbounded interval, Comment. Math., 2008, 46, 103-112
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4151596e-c3a4-4958-9308-f682dbf84c55