Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ensuring food security is a top goal for all nations, yet infected plants can negatively impact agricultural production and the country’s economic resources. In the past, farmers have depended on conventional techniques to enhance crop yield. In recent times, there has been a significant decline in crop production due to pest infestations on Chilli crops. The progress of deep learning techniques facilitates the categorization of diverse sorts of images in practical applications. Especially, detecting multi-class Chilli crop pests with good accuracy using deep learning algorithms is consistently a significant challenge. The proposed study concentrated in identifying pests on Chilli leaves using deep learning methods such as YOLOv5 and YOLOv7. To improve classification accuracy, a new and unique dataset called the standard balanced custom ‘Chilli pest dataset’ is created with 13,414 pest images. This dataset includes three specific pest classes: Black Thrips, Redmites, and White Fly. We analysed the custom Chilli dataset using YOLOv5 and YOLOv7 to evaluate their effectiveness in detecting pests in Chilli crops and obtained novel detection performance metrics. The resultant parameters mean Average Precision (mAP) for all three pest classes is 98.6% for YOLOv5 and 86.1% for YOLOv7. The YOLOv5s detector demonstrates superior performance compared to the YOLOv7 pest classification, with a 12.5% improvement. The YOLOv7 algorithm achieves its best classification accuracy (86.1%) at a lower epoch (110), while the YOLOv5 algorithm achieves its highest classification accuracy (98.6%) at a higher epoch (350). Nevertheless, despite this distinction, the YOLOv5 algorithm is recommended as the superior detector for accurately identifying pests in well-balanced multi-class pest type datasets, in comparison to YOLOv7, VGG-16 (~92.7%), and VGG-19 (~84.24%) deep learning architectures.
Wydawca
Rocznik
Tom
Strony
234--254
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
autor
- School of Computer Science and Engineering, VIT-AP University, Amaravathi, India
autor
- School of Computer Science and Engineering, VIT-AP University, Amaravathi, India
Bibliografia
- 1. Agustian, I., Faurina, R., Ishak, S. I., Utama, F.P., Dinata, K., Daratha, N. 2023. Deep learning pest detection on Indonesian red chili pepper plant based on fine-tuned YOLOv5. International Journal of Advances in Intelligent Informatics, 9(3). https://doi.org/10.26555/ijain.v9i3.864
- 2. Alsubaei, F.S., Almazroi, A.A., Ayub, N. 2024. Enhancing phishing detection: A novel hybrid deep learning framework for cybercrime forensics. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3351946
- 3. Amara, S.J., Yamini, S., Sumathi, D. 2023. Pest Detection Using YOLO V7 Model. In International Conference on Data Science and Network Engineering, 225–235. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6755-1
- 4. Ameen, Y.A., Badary, D.M., Abonnoor, A.E.I., Hussain, K.F., Sewisy, A.A. 2023. Which data subset should be augmented for deep learning? a simulation study using urothelial cell carcinoma histopathology images. BMC bioinformatics, 24(1), 75. https://doi.org/10.1186/s12859-023-05199-y
- 5. Amrani Abderraouf, Sohel Ferdous, Diepeveen Dean, Murray David, Jones Michael G. K. 2023. Insect detection from imagery using YOLOv3-based adaptive feature fusion convolution network. Crop & Pasture Science74, 615–627. https://doi.org/10.1071/CP21710
- 6. Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., Binley, A. 2020. ResIPy, an intuitive open-source software for complex geoelectrical inversion/modeling. Computers & Geosciences, 137, 104423. https://doi.org/10.1016/j.cageo.2020.104423
- 7. Carreón-Anguiano, K.G., Islas-Flores, I., VegaArreguín, J., Sáenz-Carbonell, L., Canto-Canché, B. 2020. EffHunter: A tool for prediction of effector protein candidates in fungal proteomic databases. Biomolecules, 10(5), 712. https://doi.org/10.3390/biom10050712
- 8. Ceballos, F., Kannan, S., Kramer, B. 2020. Impacts of a national lockdown on smallholder farmers’ income and food security: Empirical evidence from two states in India. World Development, 136, 105069. https://doi.org/10.1016/j.worlddev.2020.105069
- 9. Chen, C., Liang, Y., Zhou, L., Tang, X., Dai, M. 2022. An automatic inspection system for pest detection in granaries using YOLOv4. Computers and Electronics in Agriculture, 201, 107302. https://doi.org/10.1016/j.compag.2022.107302
- 10. Chen, J. W., Lin, W.J., Cheng, H.J., Hung, C.L., Lin, C.Y., Chen, S.P. 2021. A smartphone-based application for scale pest detection using multiple-object detection methods. Electronics, 10(4), 372. https://doi.org/10.3390/electronics10040372
- 11. Chen, W., Modi, D., Picot, A. 2023. Soil and phytomicrobiome for plant disease suppression and management under climate change: A review. Plants, 12(14), 2736. https://doi.org/10.3390/plants12142736
- 12. Chen, Y. 2024. The Investigation of Performance Comparison for VGG, YOLO, and DINO in Image Classification. Highlights in Science, Engineering and Technology, 85, 984–990. https://doi.org/10.54097/9bgem219
- 13. Dai, M., Dorjoy, M.M.H., Miao, H. and Zhang, S. 2023. A new pest detection method based on improved YOLOv5m. Insects, 14(1), 54. https://doi. org/10.3390/ insects14010054. 14. Dhiman, P., Kaur, A., Balasaraswathi, V.R., Gulzar, Y., Alwan, A.A., Hamid, Y. 2023. Image acquisition, preprocessing and classification of citrus fruit diseases: A systematic literature review. Sustainability, 15(12), 9643. https://doi.org/10.3390/su15129643
- 15. Dong, Q., Sun, L., Han, T., Cai, M., Gao, C. 2024. PestLite: A Novel YOLO-Based Deep Learning Technique for Crop Pest Detection. Agriculture, 14(2), 228. https://doi.org/10.3390/agriculture14020228
- 16. Dong, S., Teng, Y., Jiao, L., Du, J., Liu, K., Wang, R. 2024. ESA-Net: An efficient scale-aware network for small crop pest detection. Expert Systems with Applications, 236, 121308. https://doi.org/10.1016/j.eswa.2023.121308
- 17. Gil, J.D.B., Reidsma, P., Giller, K., Todman, L., Whitmore, A., van Ittersum, M. 2019. Sustainable development goal 2: Improved targets and indicators for agriculture and food security.Ambio, 48(7), 685–698. https://doi.org/10.1007/s13280-018-1101-4
- 18. Gillani, I.S., Munawar, M.R., Talha, M., Azhar, S., Mashkoor, Y., Uddin, M., Zafar, U. 2022. Yolov5, yolo-x, yolo-r, yolov7 performance comparison: A survey. Artificial Intelligence and Fuzzy Logic System, 17–28. https://doi.org/10.5121/csit.2022.121602
- 19. Guo, Q., Wang, C., Xiao, D., Huang, Q. 2023. Automatic monitoring of flying vegetable insect pests using an RGB camera and YOLO-SIP detector. Precision Agriculture, 24(2), 436–457. https://doi.org/10.1007/s11119-022-09952-w
- 20. Guo, Q., Wang, C., Xiao, D., Huang, Q. 2024. A lightweight open-world pest image classifier using ResNet8-based matching network and NT-Xent loss function. Expert Systems with Applications, 237, 121395. https://doi.org/10.1016/j.eswa.2023.121395
- 21. Gupta, A., Nahar, P. 2023. Classification and yield prediction in smart agriculture system using IoT. Journal of Ambient Intelligence and Humanized Computing, 14(8), 10235–10244. https://doi.org/10.1007/s12652-021-03685-w
- 22. Halgamuge, M.N., Nirmalathas, A. 2017. Analysis of large flood events: Based on flood data during 1985–2016 in Australia and India. International Journal of Disaster Risk Reduction, 24, 1–11. https://doi.org/10.1016/j.ijdrr.2017.05.011
- 23. Hatanaka, M., Konefal, J., Strube, J., Glenna, L., Conner, D. 2022. Data‐driven sustainability: Metrics, digital technologies, and governance in food and agriculture. Rural Sociology, 87(1), 206–230. https://doi.org/10.1111/ruso.12415
- 24. Horowitz, A.R., Ghanim, M., Roditakis, E., Nauen, R., Ishaaya, I. 2020. Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science, 93(3), 893–910. https://doi.org/10.1007/s10340-020-01210-0
- 25. Huang, Y., He, J., Liu, G., Li, D., Hu, R., Hu, X., Bian, D. 2023. YOLO-EP: a detection algorithm to detect eggs of Pomacea canaliculata in rice fields. Ecological Informatics, 77, 102211. https:// doi.org/10.1016/j.ecoinf.2023.102211
- 26. Huo, D., Malik, A.W., Ravana, S.D., Rahman, A.U., Ahmedy, I. 2024. Mapping smart farming: Addressing agricultural challenges in data-driven era.Renewable and Sustainable Energy Reviews, 189, 113858. https://doi.org/10.1016/j.rser.2023.113858
- 27. Jayasuriya, K., Kotapolage, D., Gamage, S., Haddela, P., Pemadasa, N. 2022. Plant Stresses and Pest Attack Detection Using Convolutional Neural Networks with Advance Preprocessing Techniques in Chili Plants. In Proceedings of the Future Technologies Conference (FTC) 2021, 2, 17–33). Springer International Publishing.
- 28. Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B. 2022. A Review of Yolo algorithm developments. Procedia computer science, 199, 1066–1073. https://doi.org/10.1016/j.procs.2022.01.135
- 29. Khan, W., Jamshed, M., Fatima, S. 2020. Contribution of agriculture in economic growth: A case study of West Bengal (India). Journal of Public Affairs, 20(2), e2031. https://doi.org/10.1002/pa.2031 30. Kumar, V., Khan, M. R., Walia, R.K. 2020. Crop loss estimations due to plant-parasitic nematodes in major crops in India. National Academy Science Letters, 43(5), 409–412. https://doi.org/10.1007/s40009-020-00895-2
- 31. Legaspi, K.R.B., Sison, N.W.S., Villaverde, J.F. 2021. Detection and classification of whiteflies and fruit flies using YOLO. In 13th International Conference on Computer and Automation Engineering (ICCAE), IEEE, 14. https://doi.org/10.1109/ICCAE51876.2021.9426129
- 32. Li, D., Ahmed, F., Wu, N., Sethi, A.I. 2022. Yolo-JD: A Deep Learning Network for jute diseases and pests detection from images. Plants, 11(7), 937. https://doi.org/10.3390/plants11070937
- 33. Lippi, M., Bonucci, N., Carpio, R.F., Contarini, M., Speranza, S., Gasparri, A. 2021. A yolo-based pest detection system for precision agriculture. In 2021 29th Mediterranean Conference on Control and Automation (MED), 342–347, IEEE. https://doi.org/10.1109/MED51440.2021.9480344
- 34. Lippi, M., Carpio, R.F., Contarini, M., Speranza, S. and Gasparri, A. 2022. A data-driven monitoring system for the early pest detection in the precision agriculture of hazelnut orchards. IFAC-Papers On Line, 55(32), 42–47. https://doi.org/10.1016/j.ifacol.2022.11.112
- 35. Liu, J., Wang, X. 2020. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network. Frontiers in plant science,11, 521544. https://doi.org/10.3389/fpls.2020.00898
- 36. Liu, L., Wang, R., Xie, C., Yang, P., Wang, F., Sudirman, S., Liu, W. 2019. PestNet: An end-to-end deep learning approach for large-scale multi-class pest detection and classification. IEEE Access, 7, 45301– 45312. https://doi.org/10.1109/access.2019.2909522
- 37. Lodaya, J.P., Suthar, M., Patel, H.C., Sisodiya, D.B., Acharya, R.R., Raval, A.T., Mohapatra, A.R. 2022. Status of invasive species of thrips, Thrips parvispinus (Karny) infesting chilli grown in middle Gujarat. The Pharma Innovation Journal 2022, 11(3), 1298–1302. https://www.thepharmajournal.com/archives/2022/vol11issue3/PartQ/11-3-144-227.pdf
- 38. Lyu, S., Zhou, X., Li, Z., Liu, X., Chen, Y., Zeng, W. 2023. YOLO-SCL: a lightweight detection model for citrus psyllid based on spatial channel interaction. Frontiers in Plant Science, 14, 1276833. https://doi.org/10.3389/fpls.2023.1276833
- 39. Mushi, G.E., Di Marzo Serugendo, G., Burgi, P.Y. 2022. Digital technology and services for sustainable agriculture in Tanzania: A literature review.Sustainability, 14(4), 2415. https://doi.org/10.3390/su14042415
- 40. Nanditha, J.S., Kushwaha, A.P., Singh, R., Malik, I., Solanki, H., Chuphal, D.S., Mishra, V. 2023. The Pakistan flood of August 2022: causes and implications. Earth’s Future, 11(3), e2022EF003230. https://doi.org/10.1029/2022EF003230
- 41. Onler, E. 2021. Real time pest detection using YOLOv5.International Journal of Agricultural and Natural Sciences,14(3), 232–246. Retrieved from https://www.ijans.org/index.php/ijans/article/view/550
- 42. Qi, F., Wang, Y., Tang, Z., Chen, S. 2023. Realtime and effective detection of agricultural pest using an improved YOLOv5s network. Journal of Real-Time Image Processing, 20(2), 33. https://doi.org/10.1007/s11554-023-01264-0
- 43. Santamaria, M.E., Arnaiz, A., Rosa-Diaz, I., GonzálezMelendi, P., Romero-Hernandez, G., Ojeda-Martinez, D.A., Diaz, I. 2020. Plant defenses against Tetranychus urticae: mind the gaps. Plants, 9(4), 464. https://doi.org/10.3390/plants9040464
- 44. Singh, D.P. 2023. Concept and Practices of IPM in Relation to Different Crops and Cropping Systems. In Integrated Pest Management in Diverse Cropping Systems 91–109. Apple Academic Press. https://doi.org/10.1201/9781003304524
- 45. Singh, S., Kansal, M.L. 2022. Cloudburst—a major disaster in the Indian Himalayan states. Civil Engineering for Disaster Risk Reduction, Springer Tracts in Civil Engineering, 115–126. https://doi.org/10.1007/978-981-16-5312-4_9
- 46. Sireesha, K.,. Prasanna B.V.L., Vijaya Lakshmi, T., and Reddy, R.V.S.K. 2021. Outbreak of invasive thrips species Thrips parvispinus in chilli growing areas of Andhra Pradesh. Insect Environment, 24(4), 514–519.
- 47. Soeb, M.J.A., Jubayer, M.F., Tarin, T.A., Al Mamun, M.R., Ruhad, F.M., Parven, A., Mubarak, N.M., Karri, S.L. and Meftaul, I.M. 2023. Tea leaf disease detection and identification based on YOLOv7 (YOLO-T). Scientific reports, 13(1), 6078. https://doi.org/10.1038/s41598-023-33270-4
- 48. Sun, L., Cai, Z., Liang, K., Wang, Y., Zeng, W., Yan, X. 2024. An intelligent system for high-density small target pest identification and infestation level determination based on an improved YOLOv5 model. Expert Systems with Applications, 239, 122190. https://doi.org/10.1016/j.eswa.2023.122190
- 49. Sun, L., Liang, K., Wang, Y., Zeng, W., Niu, X., Jin, L. 2024. Diagnosis of tomato pests and diseases based on lightweight CNN model. Soft Computing, 28(4), 3393–3413. https://doi.org/10.1007/s00500-023-08631-w
- 50. Tetila, E.C., da Silveira, F.A.G., da Costa, A.B., Amorim, W.P., Astolfi, G., Pistori, H., Barbedo, J.G.A. 2024. YOLO performance analysis for real-time detection of soybean pests. Smart Agricultural Technology, 7, 100405. https://doi.org/10.1016/j.atech.2024.100405
- 51. Tian, Y., Wang, S., Li, E., Yang, G., Liang, Z., Tan, M. 2023. MD-YOLO: Multi-scale Dense YOLO for small target pest detection. Computers and Electronics in Agriculture, 213, 108233. https://doi.org/10.1016/j.compag.2023.108233
- 52. Towfek, S.K., Khodadadi, N. 2023. Deep Convolutional Neural Network and Metaheuristic Optimization for Disease Detection in Plant Leaves. Journal of Intelligent Systems and Internet of Things, 10(1), 66–75. https://doi.org/10.54216/JISIoT.100105
- 53. Wang, X., Zhang, S., Zhang, T. 2024. Crop insect pest detection based on dilated multi-scale attention U-Net. Plant Methods, 20(1), 34. https://doi.org/10.1186/s13007-024-01163-w
- 54. Wei, M., Zhan, W. 2024. YOLO_MRC: A fast and lightweight model for real-time detection and individual counting of Tephritidae pests.Ecological Informatics, 79, 102445. https://doi.org/10.1016/j.ecoinf.2023.102445
- 55. Wen, C., Chen, H., Ma, Z., Zhang, T., Yang, C., Su, H., Chen, H. 2022. Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting. Frontiers in Plant Science, 13, 973985. https://doi.org/10.3389/fpls.2022.973985
- 56. Yang, S., Xing, Z., Wang, H., Dong, X., Gao, X., Liu, Z., Zhao, Y. 2023. Maize-YOLO: a new high- -precision and real-time method for maize pest detection. Insects, 14(3), 278. https://doi.org/10.3390/insects14030278
- 57. Zhang, Y., Ma, B., Hu, Y., Li, C., Li, Y. 2022. Accurate cotton diseases and pests detection in complex background based on an improved YOLOX model. Computers and Electronics in Agriculture, 203, 107484. https://doi.org/10.1016/j.compag.2022.107484
- 58. Zhu, L., Li, X., Sun, H., Han, Y. 2024. Research on CBF-YOLO detection model for common soybean pests in complex environment. Computers and Electronics in Agriculture, 216, 108515. https://doi.org/10.1016/j.compag.2023.108515
- 59. Zhu, R., Hao, F., Ma, D. 2023. Research on Polygon Pest-Infected Leaf Region Detection Based on YOLOv8. Agriculture, 13(12), 2253. https://doi.org/10.3390/agriculture13122253
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-414b618c-8aab-4b1a-97cd-e7b483a61110
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.