PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie sieci konwolucyjnej do wykrywania wybranych symptomów zmęczenia kierowcy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Application of convolutional neural network to the problem of detecting selected symptoms of driver fatigue
Języki publikacji
PL
Abstrakty
PL
Artykuł prezentuje wyniki badań mających na celu ocenę możliwości wykorzystania konwolucyjnej sieci neuronowej na potrzeby wykrycia objawów zmęczenia kierowcy w obrazie jego twarzy. Badania przeprowadzono z wykorzystaniem własnej bazy obrazów monochromatycznych zarejestrowanych w zakresie bliskiej podczerwieni. Uzyskane wyniki wskazują na przydatność proponowanego podejścia w budowie systemu poprawy bezpieczeństwa kierowania pojazdem.
EN
The paper presents the results of research aimed at the assessment of the possibilities of using convolutional neural networks to detect the symptoms of driver fatigue in a face image. The research was conducted with the use of own data pool which consisted of monochrome images acquired in the near infrared region. The results show that the proposed approach seems to be useful when implemented in the systems improving the safety of driving.
Rocznik
Strony
6--10
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Wojskowa Akademia Techniczna, Wydział Elektroniki, ul. Kaliskiego 2, 00908 Warszawa
  • Wojskowa Akademia Techniczna, Wydział Elektroniki, ul. Kaliskiego 2, 00908 Warszawa
Bibliografia
  • [1] Otręba P., Paluch R, Obciążenie psychiczne personel sterowania ruchem kolejowym, Zeszyty Naukowe Wyższej Szkoły Zarządzania Ochroną Pracy w Katowicach, Nr 1(4)/2008, ss. 17-32.
  • [2] Krueger G. P., Sustained Work, Fatigue, Sleep Loss and Performance: A Review of the Issues, Work and Stress, An International Journal of Work, Health and Organisations, Volume 3, 1989 - Issue 2.
  • [3] Eoh H. J., Chung M. K., Kim S. H., Electroencephalographic study of drowsiness in simulated driving with sleep deprivation, International Journal of Industrial Ergonomics, vol. 35, nr 4, 2005, ss. 307-320.
  • [4] Grace R., i inni, A drowsy driver detection system for heavy vehicles, Proceedings of the 17th Digital Avionics Systems Conference, 1998, ss. I36 1-8.
  • [5] Veeraraghavan H., Papanikolopoulos N. P., Detecting Driver Fatigue Through the Use of Advanced Face Monitoring Techniques, Publikacja ITS Institute Research Report no. CTS 01-05, 2001, University of Minnesota.
  • [6] Tock D., Craw I., Tracking and measuring drivers' eyes, Image and Vision Computing, Volume 14, Issue 8, 1996, ss. 541-54.
  • [7] Tock D., Craw I. Blink Rate Monitoring for a Driver Awareness System In: Hogg D., Boyle R. (eds) BMVC92. Springer (1992), London, ss. 518-527.
  • [8] Yufeng L., Zengcai W., Detecting Driver Yawning in Successive Images, The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007, ss. 581-583.
  • [9] Alioua N. i inni, Driver’s Fatigue Detection Based on Yawning Extraction, International Journal of Vehicular Technology, vol. 2014, Article ID 678786.
  • [10] Tang X, i inni, Real-time image-based driver fatigue detection and monitoring system for monitoring driver vigilance, 35th Chinese Control Conference (CCC), 2016, ss. 4188-4193.
  • [11] Bergasa L. M. i inni, Analysing Driver’s Attention Level using Computer Vision, Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems, Beijing, China, 2008, ss. 1149-1154.
  • [12] Zhang Y., Hua C., Driver fatigue recognition based on facial expression analysis using local binary patterns, Optik - International Journal for Light and Electron Optics, Vol. 126, nr 23, 2015, ss. 4501-4505.
  • [13] Fan X., i inni, Dynamic Human Fatigue Detection Using Feature-Level Fusion, International Conference on Image and Signal Processing, 2008, ss. 94-102.
  • [14] Schmidhuber J., Deep Learning in Neural Networks: An Overview, Technical Report IDSIA-03-14 / arXiv:1404.7828 v4.
  • [15] Zhang W., Murphey Y. L., Wang T., Driver yawning detection based on deep convolutional neural learning and robust nose tracking, International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland 12-17 July 2015.
  • [16] Yuen K., Martin S., Trivedi M. M., Looking at faces in a vehicle: A deep CNN based approach and evaluation, IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1-4 November 2016.
  • [17] Yuen K., Martin S., Trivedi M. M., On looking at faces in an automobile: Issues, algorithms and evaluation on naturalistic driving dataset, 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4-8 December 2016.
  • [18] Vora S., Rangesh A., Trivedi M. M., On generalizing driver gaze zone estimation using convolutional neural networks, IEEE Intelligent Vehicles Symposium (IV), Redondo Beach, CA, USA, 11-14 June 2017.
  • [19] Ribarić S., Lovrenčić J., Pavešić N., A neural-network-based system for monitoring driver fatigue, 15th IEEE Mediterranean Electrotechnical Conference - MELECON 2010, Valletta, Malta, 26-28 April 2010.
  • [20] Yan Ch., Jiang H., Zhang B., Coenen F., Recognizing driver inattention by convolutional neural networks, 8th International Congress on Image and Signal Processing (CISP 2015), 2015.
  • [21] Dwivedi K., Biswaranjan K.,Sethi A., Drowsy driver detection using representation learning, IEEE International Advance Computing Conference (IACC), Gurgaon, India, 21-22 February 2014.
  • [22] Park S., Pan F., Kang S., Yoo C.D. (2017) Driver drowsiness detection system based on feature representation learning using various deep networks. In: Chen CS., Lu J., Ma KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science, vol 10118. Springer, Cham.
  • [23] Huynh XP., Park SM., Kim YG. (2017) Detection of driver drowsiness using 3d deep neural network and semisupervised gradient boosting machine. In: Chen CS., Lu J., Ma KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science, vol 10118. Springer, Cham
  • [24] Krizhevsky A., Sutskever I., Hinton G.E.,: Imagenet classification with deep convolutional neural networks, NIPS Proceedings, 2012, ss. 1106–1114.
  • [25] Glorot X., Bordes A., Bengio Y., Deep Sparse Rectifer Neural Networks, Proceedings of the 14th International Conference on Artifcial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 2011, ss. 315-323.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-414b11cf-f388-45e9-b5b4-c16ac986c5da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.