PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uniformity of electroelastic field within a three-phase anisotropic piezoelectric elliptical inhomogeneity in anti-plane shear

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the Stroh quartic formalism, we prove that the internal electroelastic field is unconditionally uniform inside a three-phase anisotropic piezoelectric elliptical inhomogeneity with two confocal elliptical interfaces when the surrounding matrix is subjected to uniform remote anti-plane mechanical and in-plane electrical loading. The inhomogeneity and the matrix comprise monoclinic piezoelectric materials with symmetry plane at x3 = 0 and with poling in the x3-direction; the intermediate interphase layer is a transversely isotropic piezoelectric material with poling in the x3-direction. Moreover, we obtain the internal uniform electroelastic field inside the elliptical inhomogeneity and the non-uniform electroelastic field in the interphase layer in real-form in terms of the fundamental piezoelectricity matrices for both the inhomogeneity and the matrix and the generalized Barnett–Lothe tensors for both the interphase layer and the matrix.
Rocznik
Strony
143--156
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
autor
  • School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
autor
  • Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, Edmonton, Alberta Canada T6G 1H9
Bibliografia
  • 1. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion and related problems, Proceedings of the Royal Society of London, Series A, 241, 376–396, 1957.
  • 2. J.D. Eshelby, The elastic field outside an ellipsoidal inclusion, Proceedings of the Royal Society of London, Series A, 252, 561–569, 1959.
  • 3. J.D. Eshelby, Elastic inclusions and inhomogeneities, Progress in Solid Mechanics, II, 89–140, 1961.
  • 4. H.A. Luo, G.J. Weng, On Eshelby’s S-tensor in a three-phase cylindrically concentric solid and the elastic moduli of fiber-reinforced composite, Mechanics of Materials, 8, 77–88, 1989.
  • 5. C.Q. Ru, Three-phase elliptical inclusions with internal uniform hydrostatic stresses, Journal of the Mechanics and Physics of Solids, 47, 259–273, 1999.
  • 6. C.Q. Ru, P. Schiavone, A. Mioduchowski, Uniformity of stresses within a three-phase elliptic inclusion in anti-plane shear, Journal of Elasticity, 52, 121–128, 1999.
  • 7. T. Chen, A confocally multicoated elliptical inclusion under antiplane shear: some New results, Journal of Elasticity, 74, 87–97, 2004.
  • 8. X. Wang, Three-phase anisotropic elliptical inclusions with internal uniform in-plane and anti-plane stresses, Mathematics and Mechanics of Solids, 21, 339–357, 2016.
  • 9. R.M. Christensen, K.H. Lo, Solutions for effective shear properties in three chase sphere and cylinder models, Journal of the Mechanics and Physics of Solids, 27, 315–330, 1979.
  • 10. T.C.T. Ting, Anisotropic Elasticity: Theory and Applications, Oxford University Press, New York, 1996.
  • 11. X. Wang, P. Schiavone, Generalized Barnett–Lothe tensors for the anti-plane deformations of monoclinic piezoelectric materials, European Journal of Mechanics A/Solid, 90, 104340, 2021.
  • 12. Z. Suo, C.M. Kuo, D.M. Barnett, J.R. Willis, Fracture mechanics for piezo electric ceramics, Journal of the Mechanics and Physics of Solids, 40, 739–765, 1992.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41498cae-03a4-4338-bc4a-cb6baba2a444
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.