PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Otrzymywanie i właściwości adsorpcyjne materiałów grafenowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Synthesis and adsorption properties of graphene–based materials
Języki publikacji
PL
Abstrakty
EN
New, efficient and cost effective methods for CO2 capture are needed to keep the clean environment in the era of rising energy demand. Hydrogen is being considered as an ideal energy source for replacing fossil fuels. Since the breakthrough work in Science on graphene published in 2004 [22], this material has been intensively studied because of its great potential for applications in many fields of modern technology such as electronics [94–96], energy storage [21, 110, 111] and gas detection [13, 16]. As a two–dimensional, crystalline carbon material, graphene is characterized by superior chemicals and physical properties [2, 5]. The large theoretical specific surface area of graphene (2630 m2/g [89]) makes it an excellent material for adsorption applications. Furthermore, graphene– based materials could be doped by heteroatoms (e.g. B [72], N [106]) or decorated with various nanoparticles (e.g. Fe [55], Pd [106], Fe3O4 [8], V2O5 [79], TiO2 [79]), which significantly improves their adsorption properties. Specific mechanism CO2 [8] and H2 [104–106] takes place during adsorption processes on some graphene materials containing metal or metal oxide nanoparticles on their surfaces. In this review, the major methods for synthesis of graphene and graphene– based materials are discussed with particular emphasis on “chemical exfoliation”. The possibility of obtaining a high quality graphene material from waste materials such as polystyrene or biological materials such as crustacean skin [37, 41] is also reviewed. An overview of the newest synthesis methods of graphene [46] and modified graphene materials including polymer nanocomposites [61, 62] is presented too. A particular attention is given to CO2 and H2 adsorption properties of graphene– based materials [8, 62, 106]. Fe3O4 and Pd decorated graphene materials [8, 106–108] are ones of the most effective adsorbents described so far. These materials show a maximum CO2 adsorption capacity of 60 mmol/g at 25°C and 11 bar [8] and a maximum hydrogen uptake capacity of 4,4 wt% at 25°C and 40 bar [106]. It seems, that modified graphene materials can compete successfully with the currently used adsorbents, including nanoporous carbonaceous materials such as activated carbons, fullerenes, carbon nanotubes [8, 21] or ordered mesoporous carbon materials.
Rocznik
Strony
189--217
Opis fizyczny
Bibliogr. 118 poz., rys., tab., wykr.
Twórcy
  • Wojskowa Akademia Techniczna, 00–908 Warszawa, ul. Gen. S. Kaliskiego 2
autor
  • Wojskowa Akademia Techniczna, 00–908 Warszawa, ul. Gen. S. Kaliskiego 2
autor
  • Department of Chemistry and Biochemistry Kent State University Kent 44–242 OH, USA
Bibliografia
  • [1] H.P. Boehm, R. Setton, E. Stumpp, Pure Appl. Chem., 1994, 66, 1893.
  • [2] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science, 2008, 320, 1308.
  • [3] J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science, 2007, 315, 490.
  • [4] C. Lee, X. Wei, J.W. Kysar, J. Hone, Science, 2008, 321, 385.
  • [5] S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, Nano Lett., 2011, 11, 2396.
  • [6] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 2008, 8, 902.
  • [7] L.Y. Wang, J. Liu, K. Wang, T. Chen, X. Tan, C. Ming, Int. J. Hydrogen Energy, 2011, 36, 12950.
  • [8] A.K. Mishra, S. Ramaprabhu, J. Appl. Phys., 2014, 16, 064306.
  • [9] C. Yi, W. Wang, C. Shen, AIP Advances, 2014, 4, 031330.
  • [10] X. Liu, Y. Xue, Z. Tian, J. Mo, N. Qiu, W. Chu, H. Xie, Appl. Surf. Sci., 2013, 285, 190.
  • [11] T. Hussain, P. Panigrahi, R. Ahuja, Phys. Chem. Chem. Phys., 2014, 16, 8100.
  • [12] C. Chen, K. Xu, X. Ji, L. Miao, J. Jiang, Phys. Chem. Chem. Phys., 2014, 16, 11031.
  • [13] S. Gadipelli, Z.X. Guo, Prog. Mater. Sci., 2015, 69, 1.
  • [14] K.Z. Milowska, Mechanical and Electrical Properties of Covalently Functionalized Carbon Nanotubes and Graphene Layers, Zakład Graficzny UW, Warszawa 2013.
  • [15] A. Hirsch, J.M. Englert, F. Hauke, Acc. Chem. Res., 2013, 46, 87.
  • [16] L. Kong, A. Enders, T.S Rahman, P.A Dowben, J. Phys.: Condens. Matter, 2014, 26, 443001.
  • [17] J.G. Yu, L.Y. Yu, H. Yang, Q. Liu, X.H. Chen, X.Y. Jiang, X.Q. Chen, F.P. Jiao, Sci. Total Environ., 2015, 502, 70.
  • [18] Z. Zhang, M. Xu, H. Wang, Z. Li, Chem. Eng. J., 2010, 160, 571.
  • [19] A.K. Mishra, S. Ramaprabhu, Energy Environ. Sci., 2011, 4, 889.
  • [20] K. Mishra, S. Ramaprabhu, AIP Advances, 2011, 1, 032152.
  • [21] L. Wang, N.R. Stuckert, R.T. Yang, AIChE J., 2011, 57, 2902.
  • [22] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 2004, 306, 666.
  • [23] X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, W.A. de Heer, Phys. Rev. Lett., 2008, 101, 026801.
  • [24] S. Roth, J. Osterwalder, T. Greber, Surf. Sci., 2011, 605, 9.
  • [25] Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, H. Yang, P. Richard, Carbon, 2014, 73, 252.
  • [26] Y. Song, W. Fang, A.L. Hsu, J. Kong, Nanotechnology, 2014, 25, 395701.
  • [27] B.C. Brodie,. Phil. Trans. R. Soc. Lond. A 1859, 149, 249; L.L. Staudenmaier, Verfahren zur Darstellung der Graphitsaure Ber. Dtsch. Chem. Ges., 1898, 31, 1481; W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
  • [28] Z. Lv, X. Yang, E.K. Wang, Nanoscale, 2013, 5, 663.
  • [29] S. Wang, P.J. Chia, L.L. Chua, L.H. Zhao, R.Q. Png, S. Sivaramakrishnan, Adv. Mater., 2008, 20, 3440.
  • [30] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon, 2007, 45, 1558.
  • [31] M.R. Das, R.K. Sarma, R. Saikia, V.S. Kale, M.V. Shelke, P. Sengupta, Colloid Surface B., 2011, 83, 16.
  • [32] Z. Wang, J. Yan, Y. Zhang, Y. Ping, H. Wang, Q. Jiang, Nanoscale, 2014, 6, 3073.
  • [33] Z.S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.M. Cheng, Carbon, 2009, 47, 493.
  • [34] H. Bai, C. Li, G. Shi, Adv. Mater., 2011, 23, 1089.
  • [35] J. Deng, Y. You, V. Sahajwalla, R.K. Joshi, Carbon, 2016, 96, 105.
  • [36] J. Gong, J. Liu, X. Wen, Z. Jiang, X. Chen, E. Mijowska, T. Tang, Ind. Eng. Chem. Res., 2014. 53, 4173.
  • [37] G. Ruan, Z. Sun, Z. Peng, J.M. Tour, ACS Nano, 2011, 5, 7601.
  • [38] K.V. Manukyan, S. Rouvimov, E.E. Wolf, A.S. Mukasyan, Carbon, 2013, 62, 302.
  • [39] T. Takami, R. Seino, K. Yamazaki T. Ogino, J. Phys. D Appl. Phys., 2014, 47, 094015.
  • [40] L. Sun, C. Tian, M. Li, X. Meng, L. Wang, R. Wang, J. Yin, H. Fu, J. Mater. Chem. A, 2013, 1, 6462.
  • [41] A. Primo, P. Atienzar, E. Sanchez J. M. Delgado, H. García, Chem. Commun., 2012, 48, 9254.
  • [42] A. Suryawanshi, M. Biswal, D. Mhamane, R. Gokhale, S. Patil, D. Guin, S. Ogale, Nanoscale, 2014, 6, 11664.
  • [43] M. Choucair, P. Thordarson, J.A. Stride, Nat. Nanotechnol., 2009, 4, 30.
  • [44] L. Wang, N.R. Stuckert, R.T. Yang, AIChE, 2011, 57, 10, 2902.
  • [45] Z. Xing, B. Wang, W. Gao, C. Pan, J.K. Halsted, E.S. Chong, J. Lu, X. Wang, W. Luo, C. Changc, Y. Wend, S. Mae, K. Amineb, X. Ji, Nano Energy, 2015, 11, 600. 215
  • [46] W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. Gaskell, A. Grüneis, D. Haberer, R. Bozek, J. Krupka, J. Baranowski, Nano Lett., 2011, 11, 1786.
  • [47] M. Tokarczyk, G. Kowalski, K. Grodecki, J. Urban, W. Strupiński, Acta Prys. Pol. A, 2013, 124, 768.
  • [48] Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, J. Cao, Electrochim. Acta, 2010, 55, 3897.
  • [49] S. Chowdhury, R. Balasubramanian, J. CO2 Util., 2016, 13, 50.
  • [50] A. Kaniyoor, T.T. Baby, T. Arockiadoss, N. Rajalakshmi, S. Ramaprabhu, J. Mater. Chem. C, 2011, 115, 17660.
  • [51] B. Anand, A. Kaniyoor, D. Swain, T.T. Baby, S.V. Rao, S.S.S. Sai, S. Ramaprabhub, R. Philip, J. Mater. Chem. C, 2014, 2, 10116.
  • [52] H. C. Schniepp, J. Li, M.J. McAllister, H. Sai, M. Herrera–Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B, 2006, 110, 8535.
  • [53] L. Wan, P. Liu, T. Zhang, Y. Duan, J. Zhang, J. Mater. Sci., 2014, 49, 4989.
  • [54] P. Divya, S. Ramaprabhu, Phys. Chem. Chem. Phys., 2014, 16, 26725.
  • [55] M. Sterlin, L. Hudson, H. Raghubanshi, S. Awasthi, T. Sadhasivam, A. Bhatnager, S. Simizu, S.G. Sankar, O.N. Srivastava, Int. J. Hydrogen Energ., 2014, 39, 8311.
  • [56] H.L. Poh, P. Simek, Z. Sofer, I. Tomandl, M. Pumera, J. Mater. Chem. A, 2013, 1, 13146.
  • [57] B. Xiong, Y. Zhoua, R.O. Hayre, Z. Shao, Appl. Surf. Sci., 2013, 266, 433.
  • [58] S. Lee, S. Park, Carbon, 2014, 68, 112.
  • [59] P. Tamilarasan, S. Ramaprabhu, J. Mater. Chem. A, 2015, 3, 101.
  • [60] Y. Zhang, H. Chi, W. Zhang, Y. Sun, Q, Liang, Y. Gu, R. Jing, Nano–Micro Lett., 2014, 6, 80.
  • [61] K.C. Kemp, V. Chandra. M. Saleh, K.S. Kim, Nanotechnology, 2013, 24, 235703.
  • [62] V. Chandra, S.U. Yu, S.H. Kim, Y.S. Yoon, D.Y. Kim, A.H. Kwon, M. Meyyappan, K.S. Kim, Chem. Commun., 2012, 48, 735.
  • [63] M. Saleh, V. Chandra, K. C. Kemp, K. S. Kim, Nanotechnology, 2013, 24, 255702.
  • [64] S. Wang, A. Morelos–Gómez, Z. Lei, M. Terrones, K. Takeuchi, W. Sugimoto, M. Endo, K. Kaneko, Carbon, 2016, 96, 174,
  • [65] T. Wang, L.X. Wang, D.L. Wu, W. Xia, D.Z. Jia, Sci. Rep., 2015, 5, 9591.
  • [66] H. Gao, Z. Liu, L. Song, W. Guo, W. Gao, L. Ci, A. Rao, W. Quan, R. Vajtai, P.M. Ajayan, Nanotech¬nology, 2012, 23, 275605.
  • [67] A. Dhakshinamoorthy, M. Latorre–Sanchez, A.M. Asiri, A. Primo, H. Garcia, Catal. Commun., 2015, 65, 10.
  • [68] P. Xu, D. Wu, L. Wan, P. Hu, R. Liu, J. Colloid. Interf. Sci., 2014, 421, 160.
  • [69] J.M. You, M.S. Ahmed, H.S. Han, J. Choe, Z. Üstündag, S. Jeon, J. Power Sources, 2015, 275, 73.
  • [70] X. Li, M. Antonietti, Angewandte Chem. Int. Edit., 2013, 52, 4572.
  • [71] J. Han, L.L. Zhang, S Lee, J. Oh, K. Lee, J.R. Potts, J. Ji, X. Zhao, R.S. Ruoff, S. Park, ACS Nano, 2013, 7, 19.
  • [72] J. Oh, Y. Mo, V. Le, S. Lee, J. Han, G. Park, Y. Kim, S. Park, S. Park, Carbon, 2014, 79, 450.
  • [73] Z. Zuo, Z. Jiang, A. Manthiram, J. Mat. Chem. A, 2013, 1, 13476.
  • [74] Z. Wu, A. Winter , L. Chen , Y. Sun , A. Turchanin , X. Feng , K. Müllen, Adv. Mat., 2012, 24, 5130.
  • [75] L.H. Yao, M.S. Cao, H.J. Yang, X.J. Liu, X.Y. Fang, J. Yuan, Comp. Mater. Sci., 2014, 85, 179.
  • [76] A. Lebon, J. Carrete, R.C. Longo, A. Vega, L.J. Gallego, Int. J. Hydrogen Energ., 2013, 38, 8872.
  • [77] T. Qian, C. Yu, X. Zhou, S. Wu, J. Shen, Sensor. Actuat. B, 2014, 193, 759.
  • [78] C. Li, X. Wang, F. Chen, C. Zhang, X. Zhi, K. Wang, D. Cui, Biomaterials, 2013, 34, 3882.
  • [79] W.G. Hong, B.H. Kim, S.M. Lee, H.Y. Yu, Y.J. Yun, Y. Jun, J.B. Lee, H.J. Kim, Int. J. Hydrogen Energ., 2012, 37, 7594.
  • [80] Y. Tian, Y. Liu, W. Wang, X. Zhang, W. Peng, Electrochim. Acta, 2015, 156, 244.
  • [81] M.R. Das, R.K. Sarma, S.C. Borah, R. Kumari, R. Saikia, A.B. Deshmukh, M.V. Shelke, P. Sengupta, S. Szunerits, R. Boukherroub, Colloid. Surface B, 2013, 105, 128. 216
  • [82] B. Qi, D. Zhang, P. Qi, J. Colloid. Interf. Sci., 2011, 360, 463.
  • [83] X. Shen, J. Wu, S. Bai, H. Zhou, J. Alloy. Compd., 2010, 506, 136.
  • [84] Y. Yao, S. Miao, S. Liu, L.P. Ma, H. Sun, S. Wang, Chem. Eng. J., 2012, 184, 326.
  • [85] A.K. Mishra, S. Ramaprabhu, J. Phys. Chem. C, 2011, 115, 14006.
  • [86] A. Kaniyoor, T.T. Baby, S. Ramaprabhu, J. Mater. Chem., 2010, 20, 8467.
  • [87] A.K. Mishra, S. Ramaprabhu, J. Phys. Chem. C, 2010, 114, 2583.
  • [88] J. Liu, Z. Zhao, G. Jiang, Environ. Sci. Technol., 2008, 42, 6949.
  • [89] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett., 2008, 8, 3498.
  • [90] A.K. Geim, K.S. Novoselov, Nat. Mater., 2007, 6, 183.
  • [91] A. Buchsteiner, A. Lerf, J. Pieper, J. Phys. Chem. B, 2006, 110, 22328.
  • [92] L. Wang, K. Lee, Y. Sun, M. Lucking, Z. Chen, J.J. Zhao, S.B. Zhang, ACS Nano, 2009, 3, 2995.
  • [93] D.R. Dreyer, S. Park, C. W. Bielawski, R.S. Ruoff, Chem. Soc. Rev., 2010, 39, 228.
  • [94] C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol., 2010, 5, 722.
  • [95] Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature, 2005, 438, 201.
  • [96] N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.H. Castro Neto, M.F. Crom¬mie, Science, 2010, 329, 544.
  • [97] P. Tans, R. Keeling, Trends in Atmospheric Carbon Dioxide. [online], [dostep: 2015–12–15]. Dostepny w internecie: http://www.esrl.noaa.gov/gmd/ccgg/trends/.
  • [98] S.Y. Lee, S.J. Park, J. Ind. Eng. Chem., 2015, 23, 1.
  • [99] R. Balasubramanian, S. Chowdhury, J. Mater. Chem. A, 2015, 3, 21968.
  • [100] Q. Wang, Y.S. Gao, J.Z. Luo, Z.Y. Zhong, A. Borgna, Z.H. Guo, D. O’Hare, RSC Adv., 2013, 3, 3414.
  • [101] J. Wang, X. Mei, L. Huang, Q. Zheng, Y. Qiao, K. Zang, S. Mao, R. Yang, Z. Zhang, Y. Gaoa, Z. Guoc, Z. Huang, Q. Wang, J. Energy Chem., 2015, 24, 127.
  • [102] D. Iruretagoyena, M.S.P. Shaffer, D. Chadwick, Adsorption, 2014, 20, 321.
  • [103] US Department of Energy, Targets for Onboard Hydrogen Storage Systems for Light–Duty Vehicles, 2009. [online], [dostęp: 2015–12–18].Dostępny w Internecie: http://www1.eere.energy.gov/ hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf
  • [104] P. Divya, S. Ramaprabhu, Phys. Chem. Chem. Phys., 2014, 16, 26725.
  • [105] M.J. López, I. Cabria, J.A. Alonso, J. Phys. Chem. C, 2014, 118, 5081.
  • [106] V.B. Parambhath, R. Nagar, S. Ramaprabhu, Langmuir, 2012, 28, 7826.
  • [107] S.E. Moradi, Appl. Phys. A, 2015, 119, 179.
  • [108] B.P. Vinayan, R. Nagar, S. Ramaprabhu, J. Mater. Chem. A, 2013, 1, 11192.
  • [109] A. Ghosh, K.S. Subrahmanyam, K.S. Krishna, S. Datta, A. Govindaraj, S.K. Pati, C.N.R. Rao, J. Phys. Chem. C, 2008, 112, 15704.
  • [110] S. Patchkovskii, J.S. Tse. Sergei, N. Yurchenko, L. Zhechkov, T. Heine, G. Seifert, PNAS, 2005, 102, 10439.
  • [111] A. Lebon, J. Carrete, L.J. Gallego, A. Vega, Int. J. Hydrogen Energ., 2015, 40, 4960.
  • [112] Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff1, Science, 2011, 332, 1537
  • [113] S. Wang, H. Sun, H.M. Ang, M.O. Tadé, Chem. Eng. J., 2013, 226, 336.
  • [114] Y. Shen, Q. Fang, B. Chen, Environ. Sci. Technol., 2015, 49, 67.
  • [115] K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Nanoscale, 2013, 5, 3149.
  • [116] A. Laskowska, M. Lipńska, M. Zaborski, Przem. Chem., 2012, 91, 1000.
  • [117] G. Eda, M. Chhowalla, Nano. Lett., 2009, 9, 814.
  • [118] Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Trends Biotechnol., 2011, 29, 205.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-414447e7-6f77-413a-b7c9-432d1fb6138e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.