PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Galvanic coupling intra-body communication channel model based on anisotropic muscular tissue

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Sprzężenie galwaniczne w modelu kanałowym mięśni człowieka
Języki publikacji
EN
Abstrakty
EN
Background: Characteristics of human tissues have direct effects on transmission property of the current signal in human tissues. It is learned from anatomy that, characteristics of all human tissues are not identical, and some like skin and fat are isotropic, while others like muscle are anisotropic. Muscular tissue has a great effect on transmission and distribution of the current signal in human body. Method: based on human tissue’s characteristics and boundary conditions under the quasi-static condition, the channel model based on human tissue’s characteristics is built in the cylindrical coordinate system by means of Maxwell equation. Furthermore, the model is verified through model calculation and experiments on human body. Results: in combination with electric parameters of human anisotropic tissue (muscle), the derived channel model is used to obtain computed results of the channel model with human tissue’s characteristics and the one without human tissue’s characteristics in MATLAB2010a. Next, these results are compared with the data obtained from measurement on human right forearm. It can be found from comparison that the gain curve of the channel model with human tissue’s characteristics is highly consistent with experimental data. Conclusion: The model with human tissue’s characteristics can show characteristics of the intra-body communication channel more accurately. On one hand, the channel precision is improved; on the other hand, it provides reference for building the implantable intra-body communication channel model with the transmission signal from inside to outside.
PL
Bazując na charakterystyce ludzkiego ciała i warunkach zewnętrznych określono model kanałowy wykorzystujący równani a Maxwella. Model weryfikowano eksperymentalnie.
Rocznik
Strony
74--76
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • The Engineering & Technical College Of Chengdu University Of Technology
  • University of Macau
autor
  • The Engineering & Technical College Of Chengdu University Of Technology
autor
  • University of Macau
autor
  • University of Macau
autor
  • University of Macau
Bibliografia
  • [1] T.G.Zimmerman.Personal Area Networks (PAN): Near-Field Intra-Body Communication: [Master Thesis].USA: Massachusetts Institute of Technology,1995.
  • [2] T.G.Zimmerman.Personal Area Networks: Near-field intrabody communication.IBM Systems Journals,1996.35: 609-617.
  • [3] Shuang Zhang ,Yu ping Qin,Peng Un MAK ,Sio Hang PUN,Mang I VAI.Real-time medical monitoring system design based on intra-body communication.Journal of Theoretical and Applied Information Technology.2013.47(2): 649 – 652.
  • [4] Wu Chen,Shuang Zhang,Yu-ping Qin,Pailla Tejaswy.Overview of Intra-body Communication Research.Journal of Convergence Information Technology.2012.7(20):226-233.
  • [5] M.S.Wegmuller.“Intra-Body Communication (IBC) for Biomedical Sensor Networks”.[PhD Thesis].Switzerland: ETH,2007.
  • [6] K.Hachisuka,T.Takeda,Y.Terauchi,et al.Intra-body data transmission for the personal area network . Microsyst.Technol.,2005.1020-1027.
  • [7] K.Hachisuka,Y.Terauchi,Y.Kishi,et al.Simplified circuit modeling and fabrication of intrabody communication devices.Sensors and Actuators,2006.322-330.
  • [8] M.S.Wegmueller,A.Kuhn,J.Froehlich,et al.An Attempt to Model the Human Body as a Communication Channel.IEEE Transactions on Biomedical Engineering,2007.54(10):1851~1857,.
  • [9] S.H.Pun;Y.M.Gao; P.U.Mak; M.I Vai ; M.Du.Quasi-Static Modeling of Human Limb for Intra-Body Communication (IBC)s With Experiments.IEEE Transactions on Information Technology in Biomedicine,2011.15(6): 870~876.
  • [10] Xi Mei Chen ,Peng Un Mak ,Sio Hang Pun ,Yue Ming Gao ,Chan-Tong Lam ,Mang I.Vai ,and Min Du.Study of Channel Characteristics for Galvanic-Type Intra-Body Communication Based on a Transfer Function from a Quasi-Static Field Model.Sensors 2012,12,16433-16450.
  • [11] GEDDES,L.A.and BAKER,L.E.The specific resistance of biological material.A compendium of data for the biomedical engineer and physiologist.Med.& Biol.Eng..1967.5: 271-293.
  • [12] DIMITROY,G.and DIMITROVA,N.Extracellular potential field of a single striated muscle fibre immersed in anisotropic volume conductor.Electromyogr.Clin.Neurophysiol..1974.14: 423-436.
  • [13] F.L.H.Gielen,W. Wallinga-de Jonge, K.L.Boon. electrical coductivty of skeletal muscle tissue:experimental results from different muscles in vivo.Medical & Biological Engineering & Computing.1984.22:569-577
  • [14] S.Gabriel,R.W.Lau.C.Gabriel.the dielectric properties of biological tissues:II.measurements in the frequency rang 10Hz to 20GHz.Phys.Med.Biol.1996.41.2251-2269.
  • [15] R.Plonsey and E.B.Heppner,Considerations of quasistationarity in electrophysiological systems, Bulletin of mathematical biophysics.1967 29: 657–664,.
  • [16] R.Plonsey, Volume conductor theory, in The biomedical engineering handbook (J.D.Bronzino,ed.),Boca Raton: CRC Press LLC,2000.
  • [17] J.Malmivuo and R.Plonsey,Bioelectromagnetism.New York: Oxford University Press,1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41348c97-4fc5-473d-a577-067591338149
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.