Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mechanics of a flysch rock mass is determined by its complex discontinuity, heterogeneity, anisotropy, and diverse deformation modes. This study proposes a new methodology to simulate the deformation of Carpathian flysch in the vicinity of tunnels, employing the distinct element method (DEM), global-local modelling approach and a hybrid representation of discontinuities. The methodology enables the simulation of a wide range of structural models and properties of Carpathian flysch and reduces the computational complexity of numerical models. A global model reflects the initial stress field. Local models detail the properties of joint sets separating rock blocks and the properties of the ubiquitous joint model material inside the discrete blocks. Both direct and indirect representations of discontinuities contribute to the model response. The numerical model is addressed as a multiparameter system and examined through statistical design of experiments (DOE). The model is calibrated and validated using field measurements of displacements and convergences. The factors contributing to uncertainty in the simulation results are considered. A parametric analysis was conducted on the deformation of flysch rock mass surrounding a tunnel, evaluating the impact of bedding orientation, depth, and support stiffness. Bedding dip direction explained the asymmetry in sidewall convergence and its changes. Discontinuity stiffness and dilation, rarely studied model parameters, were found to have a significant effect on simulation error.
Wydawca
Czasopismo
Rocznik
Tom
Strony
685--709
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
- Department of Civil & Geotechnical Engineering and Geomechanics, AGH University of Krakow, Poland
autor
- Department of Underground and Mining Construction, Hanoi University of Minning and Geology, Vietnam
Bibliografia
- [1] R . Hart, P.A. Cundall, J. Lemos, Formulation of a three-dimensional distinct element model – part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int. J. Rock Mech. Min.Sci. Geomech. Abstr. 25, 117-125 (1988). DOI: https://doi.org/10.1016/0148-9062(88)92294-2.
- [2] 3DEC 3-dimensional distinct element code. Itasca, Minneapolis, MN (2019).
- [3] H . Konietzky, L. te Kamp, H. Hammer, S. Niedermeyer, Numerical modelling of in situ stress conditions as anaid in route selection for rail tunnels in complex geological formations in South Germany. Comput. Geotech. 28,495-516. DOI: https://doi.org/10.1016/S0266-352X(01)00009-X.
- [4] X. Wang, P.H.S.W. Kulatilake, W.D. Song, Stability investigations around a mine tunnel through three-dimensional discontinuum and continuum stress analyses. Tunn. Undergr. Space Technol. 32, 98-112 (2012).DOI: https://doi.org/10.1016/j.tust.2012.06.003.
- [5] Z. Cui, D. Liu, F. Wu, Influence of dip directions on the main deformation region of layered rock around tunnels. Bull. Eng. Geol. Environ. 73, 441-450 (2014). DOI: https://doi.org/10.1007/s10064-013-0511-6.
- [6] N . Esteban N, R. Galindo, A. Serrano, Analytical formulation for the deformability assessment of rock masses with filled discontinuities. Comput. Geotech. 136, 104111 (2021).DOI: https://doi.org/10.1016/j.compgeo.2021.104111.
- [7] Z. Hu, B. Wu, N. Xu, K. Wang, Effects of discontinuities on stress redistribution and rock failure: a case of underground caverns. Tunn. Undergr. Space Technol. 127, 104583 (2022).DOI: https://doi.org/10.1016/j.tust.2022.104583.
- [8] A. Shi, C. Li, W. Hong, G. Lu, J. Zhou, H. Li, Comparative analysis of deformation and failure mechanisms of underground powerhouses on the left and right banks of Baihetan hydropower station. J. Rock Mech. Geotech.Eng. 14, 731-745 (2022). DOI: https://doi.org/10.1016/j.jrmge.2021.09.012.
- [9] W . Dong, S. Ji, C. Li, X. Chen, Y. Song, The influence of different influencing factors in the jointed rock formation on the failure mode of the tunnel. Geotech. Geol. Eng. 41, 1183-1201 (2023).DOI: https://doi.org/10.1007/s10706-022-02329-w.
- [10] H . Fan, L. Li, P. Zong, H. Liu, L. Yang, J. Wang, P. Yan, S. Sun, Advanced stability analysis method for the tunnel face in jointed rock mass based on DFN-DEM. Undergr. Space. 13, 136-149 (2023).DOI: https://doi.org/10.1016/j.undsp.2023.03.009.
- [11] T.A. Phan, Modelling of flysch rock mass behavior in tunnel vicinity with discrete blocks approach. PhD Thesis, AGH University of Krakow, Poland (2023).
- [12] Y . Chen, J. Teng, 3DEC numerical analysis of failure characteristics for tunnel in stratified rock masses. KSCE J.Civ. Eng. 28, 2420-2426 (2024). DOI: https://doi.org/10.1007/s12205-024-1318-7.
- [13] N . Xu, J. Zhang, H. Tian, G. Mei, Q. Ge, Discrete element modeling of strata and surface movement induced by mining under open-pit final slope. Int. J. Rock Mech. Min. Sci. 88, 61-76, (2016).DOI: https://doi.org/10.1016/j.ijrmms.2016.07.006.
- [14] B . Regassa, N. Xu, G. Mei, An equivalent discontinuous modeling method of jointed rock masses for DEM simulation of mining-induced rock movements. Int. J. Rock Mech. Min. Sci. 108, 1-14 (2018).DOI: https://doi.org/10.1016/j.ijrmms.2018.04.053.
- [15] D. Donati, D. Stead, T.W. Stewart, J. Marsh, Numerical modelling of slope damage in large, slowly moving rocks lides:in sights from the downie slide, British Columbia, Canada. Eng. Geol. 273, 105693 (2020).DOI: https://doi.org/10.1016/j.enggeo.2020.105693.
- [16] H . Wang, B. Zhang, G. Mei, N. Xu, A statistics-based discrete element modeling method coupled with the strength reduction method for the stability analysis of jointed rock slopes. Eng. Geol. 264, 105247 (2020).DOI: https://doi.org/10.1016/j.enggeo.2019.105247.
- [17] L. Zabuski, G. Marcato, Analysis of potential landslide processes in the Passo della Morte (Carnian Alps, Italy).Geol. Q. 64, 681-691 (2020). DOI: https://doi.org/10.7306/gq.1552.
- [18] B . Liu, K. He, M. Han, X. Hu, T. Wu, M. Wu, G. Ma, Dynamic process simulation of the Xiaogangjian rock slide occurred in shattered mountain based on 3DEC and DFN. Comput Geotech 134, 104122 (2021).DOI: https://doi.org/10.1016/j.compgeo.2021.104122.
- [19] J.H. Wu, P.H. Hsieh, Simulating the post failure behavior of the seismically-triggered Chiu-Fen-Erh-Shan land slide using 3DEC. Eng. Geol. 287, 106113 (2021). DOI: https://doi.org/10.1016/j.enggeo.2021.106113.
- [20] A.S. Mreyen, D. Donati, D. Elmo, F.V. Donze, H.B. Havenith, Dynamic numerical modelling of co-seismic landslides using the 3D distinct element method: insights from the Balta rockslide (Romania). Eng. Geol. 307, 106774(2022). DOI: https://doi.org/10.1016/j.enggeo.2022.106774.
- [21] P.H.S.W. Kulatilake, Q. Wu, Z. Yu, F. Jiang, Investigation of stability of a tunnel in a deep coal mine in China. Int.J. Min. Sci. Technol. 23, 579-589 (2013). DOI: https://doi.org/10.1016/j.ijmst.2013.07.018.
- [22] S.Q. Yang, M. Chen, H.W. Jing, K.F. Chen, B. Meng, A case study on large deformation failure mechanism of deep soft rock roadway in Xin’An coal mine, China. Eng. Geol. 217, 89-101 (2017).DOI: https://doi.org/10.1016/j.enggeo.2016.12.012.
- [23] Y . Xing, P.H.S.W. Kulatilake, L.A. Sandbak, Effect of rock mass and discontinuity mechanical properties and delayed rock supporting on tunnel stability in an underground mine. Eng. Geol. 238, 62-75 (2018).DOI: https://doi.org/10.1016/j.enggeo.2018.03.010.
- [24] A. Li, F. Dai, N. Xu, G. Gu, Z. Hu, Analysis of a complex flexural toppling failure of large underground cavernsin layered rock masses. Rock Mech. Rock Eng. 52, 3157-3181 (2019).DOI: https://doi.org/10.1007/s00603-019-01760-5.
- [25] T.D. Le, J. Oh, Longwall face stability analysis from a discontinuum-discrete fracture network modelling. Tunn.Undergr. Space Technol. 124, 104480 (2022). DOI: https://doi.org/10.1016/j.tust.2022.104480.
- [26] F . Wang, D. Shao, C. Zhang, Z. Song, Overlying sand-inrushing mechanism and associated control technology for longwall mining in shallow buried coal seams with the soft surrounding rock. Arch. Min. Sci. 67, 4, 681-697(2022). DOI: https://doi.org/10.24425/ams.2022.143681.
- [27] J. Jakubowski, 3DEC modeling results generalized by stochastic approach. In: Proceedings of the first international UDEC/3DEC symposium: numerical modeling of discrete materials in geotechnical engineering, civil engineering, and earth sciences, Bochum, Germany. Taylor & Francis Group, London, UK, p. 165-174 (2004).
- [28] J. Jakubowski, A. Tajduś, The 3D Monte-Carlo simulation of rigid blocks around a tunnel. In: Mechanics of jointed and faulted rock, proceedings of the 2nd international conference, Vienna, Austria. A. A. Balkema, London, UK,p. 551-556 (1995).
- [29] J. Jakubowski, Probabilistic stability analysis of a tunnel in a fracture zone. Arch. Min. Sci. 56, 405-413 (2011).
- [30] J. Jakubowski, The stochastic block stability simulation method and other probabilistic extensions of block theory. Arch. Min. Sci. 56, 223-238 (2011).
- [31] J. Sjöberg, L. Malmgren, Application of global-local modelling to mining rock mechanics problems. In: Proceedings of the first international FLAC/DEM symposium on numerical modeling. Minneapolis, Minn, p. 25-27 (2008).
- [32] C . Edelbro, J. Sjöberg, L. Malmgren, C. Dahnér-Lindqvist, Prediction and follow-up of failure and fallouts infootwall drifts in the Kiirunavaara mine. Can. Geotech. J. 49, 546-559 (2012).DOI: https://doi.org/10.1139/t2012-012.
- [33] H . Basarir H, Y. Sun, G. Li, Gateway stability analysis by global-local modeling approach. Int. J. Rock Mech. Min.Sci. 113, 31-40 (2019). DOI: https://doi.org/10.1016/j.ijrmms.2018.11.010.
- [34] B . Zhao, X. Wang, C. Zhang, W. Li, R. Abbassi, K. Chen, Structural integrity assessment of shield tunnel crossing of a railway bridge using orthogonal experimental design. Eng. Fail. Anal. 114, 104594 (2020).DOI: https://doi.org/10.1016/j.engfailanal.2020.104594.
- [35] A. Jiang, X. Guo, S. Zheng, M. Xu, Parameters identification of tunnel jointed surrounding rock based on Gaussianprocess regression optimized by difference evolution algorithm. Comput. Model. Eng. Sci. 127, 1177-1199 (2021).DOI: https://doi.org/10.32604/cmes.2021.014199.
- [36] Y . Zhao, S.J. Feng, Back analysis of surrounding rock parameters of tunnel considering displacement loss and space effect. Bull. Eng. Geol. Environ. 80, 5675-5692 (2021).DOI: https://doi.org/10.1007/s10064-021-02254-x.
- [37] M. Schoen, R. Hölter, D. Boldini, A.A. Lavasan, Application of optimal experiment design method to detect the ideal sensor positions: a case study of Milan metro line 5. Tunn. Undergr. Space Technol. 130, 104723 (2022).DOI: https://doi.org/10.1016/j.tust.2022.104723.
- [38] Y . Wu, H. Wang, X. Guo, Inversion of surrounding red-bed soft rock mechanical parameters based on the PSOXG Boost algorithm for tunnelling operation. Appl. Sci. 13, 13341 (2023).DOI: https://doi.org/10.3390/app132413341.
- [39] J. Cui, S. Wu, H. Cheng, G. Kui, H. Zhang, M. Hu, P. He, Composite interpretability optimization ensemble learning inversion surrounding rock mechanical parameters and support optimization in soft rock tunnels. Comput. Geotech. 165, 105877 (2024). DOI: https://doi.org/10.1016/j.compgeo.2023.105877.
- [40] X. Zhang, D. Zhang, Y. Rong, Y. Ma, C. Yao, Y. Sun, Study on the stability of tunnel in weak surrounding rockconsidering initial support parameters and excavation method. KSCE J. Civ. Eng. 28, 2427-2439 (2024).DOI: https://doi.org/10.1007/s12205-024-1520-7.
- [41] Z. Bestyński, K. Thiel, L. Zabuski, Geotechnical classifications of flysch rock mass. Hydrotech. Diss. 52. (1991).
- [42] K . Thiel, Physico-mechanical properties and models of the polish flysch carpathians rock mass. Archives of Hydro-Engineering and Environmental Mechanics, Gdańsk, Poland (1995).
- [43] L. Zabuski, Behavior of the flysch rock environment surrounding the tunnel. Archives of Hydro-Engineering and Environmental Mechanics, Gdańsk, Poland (2002).
- [44] M. Dynowska, Prediction of the deformation of the flysch rock mass in the tunnel surroundings. Ph.D. Thesis, AGH University of Science and Technology, Kraków, Poland (1999).
- [45] J. Pinińska, Geological and engineering evaluation systems for rocks and rock masses. Przegląd Geologiczny 49,804-814 (2001).
- [46] P. Marinos, E. Hoek, Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull.Eng. Geol. Environ. 60, 85-92 (2001). DOI: https://doi.org/10.1007/s100640000090.
- [47] Z. Pilecki, Geotechnical model of rock mass for road tunnel projection in the Carpathian flysch. Publications of the Institute of Geophysics, Polish Academy of Sciences, Series M: Miscellanea. 24, 383-396 (2002).
- [48] P. Łukaszewski, Assessment of Flysch sandstones’ strength at various loading paths in conditions of conventional triaxial compression. Przegląd Geologiczny 53, 596-601 (2005).
- [49] T. Majcherczyk, Z. Pilecki, Z. Niedbalski, E. Pilecka, M. Blajer, J. Pszonka, The influence of geological engineering and geotechnical conditions on parameter selection of the primary lining of a road tunnel in Laliki. Miner. Resour. Manag. 28, 103-124 (2012). DOI: https://doi.org/10.2478/v10269-012-0006-2.
- [50] J.P. Kogut, E. Pilecka, D. Szwarkowski, Analysis of landslide effects a long a road located in the Carpathian flysch. Open Geosciences 10 (1), 517-531 (2018).
- [51] Z. Niedbalski, P. Małkowski, T. Majcherczyk, Application of the NATM method in the road tunneling works in difficult geological conditions – the Carpathian flysch. Tunn. Undergr. Space Technol. 74, 41-59 (2018).DOI: https://doi.org/10.1016/j.tust.2018.01.003
- [52] V . Marinos, A revised, geotechnical classification GSI system for tectonically disturbed heterogeneous rock masses, such as flysch. Bull. Eng. Geol. Environ. 78, 899-912 (2019). DOI: https://doi.org/10.1007/s10064-017-1151-z.
- [53] V . Marinos, A. Goricki, E. Malandrakis, Determining the principles of tunnel support based on the engineering geological behaviour types: example of a tunnel in tectonically disturbed heterogeneous rock in Serbia. Bull. Eng. Geol. Environ. 78, 2887-2902 (2019). DOI: https://doi.org/10.1007/s10064-018-1277-7.
- [54] M. Blajer, M. Cała, M. Kolano, A. Stopkowicz, A Tajduś, Identification of a flysch mass and classification of its quality. Mosty 3, 89-92 (2019).
- [55] B . Fleetwood, M.S. Brook, G. Brink, N.R. Richards, L. Adam, P.M. Black, Characterization of a highly heterogeneous flysch deposit and excavation implications: case study from Auckland, New Zealand. Bull. Eng. Geol. Environ. 79, 4565-4578 (2020). DOI: https://doi.org/10.1007/s10064-020-01873-0.
- [56] A. Tajduś, K. Tajduś, Assessment of the behaviour of flysch rock mass during tunnel boring in the primary lining using indicators and limit values of displacements and deformations. Arch. Min. Sci. 67, 2, 355-376 (2022).DOI: https://doi.org/10.24425/ams.2022.141463.
- [57] M. Blajer, Method of tunnel support design for Carpathian flysch conditions. PhD Thesis, AGH University of Science and Technology, Kraków, Poland (2023).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41329e8c-6688-4524-ad95-e46ec2bce1a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.