PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Steady state creep behavior of short fiber composites by mapping, logarithmic functions (MF) and dimensionless parameter (DP) techniques

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new mathematical insight based on logarithmic, polynomial mapping functions (MF), and dimensionless parameter (DP) models is presented for determination of some unknowns in the steady state creep stage of short fiber composites subjected to axial loading. These unknowns are displacement rate in outer surface of the unit cell, shear and equivalent stresses at interface and outer surface of the unit cell, and average axial stress in fiber. Dimensionless parameter technique is presented for determination of displacement rate and equivalent stress in outer surface of the unit cell. However, the polynomial mapping function is presented for determination of average axial stress in fiber. Most important novelty of the present research work is determination of the mentioned unknowns in steady state creep by DP and MF techniques without using the shear-lag theory unlike the previous researches. Good agreements are found among the new approaches and previous analytical results based on the shear-lag theory and also numerical solutions (FEM) for predicting the steady state creep behavior in short fiber composites.
Rocznik
Strony
455--463
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Aerospace Engineering, Sharif University of Technology, Azadi Avenue, P.O.Box 11365-8639, Tehran, Iran
Bibliografia
  • [1] S.T. Mileiko, Steady state creep of a composite with short fibres, Journal of Materials Science 5 (1970) 254–261.
  • [2] T.G. Nieh, Creep rupture of a silicon-carbide reinforced aluminum composite, Metallurgical Transactions A 15 (1984) 139–146.
  • [3] T. Morimoto, T. Yamaoka, H. Lilholt, M. Taya, Second stage creep of silicon carbide whisker/6061 aluminum composite at 573 K, Journal of Engineering Materials and Technology 110 (1988) 70–76.
  • [4] F.A. Mohamed, K.T. Park, E.J. Lavernia, Creep behavior of discontinuous SiC–Al composites, Materials Science and Technology A150 (1992) 21–35.
  • [5] A. Greasly, Creep of dispersion reinforced aluminum based metal matrix composite, Materials Science and Technology 11 (1995) 163–166.
  • [6] K. Csach, J. Miskuf, A. Juríkova, P. Vojtaník, Creep behaviour of Co-based amorphous alloys, Acta Physica Polonica A 113 (2008) 91–94.
  • [7] K.P. Solek, A. Łukaszek-Solek, Rheological properties of alloys near solidus point intended for thixoforming, Archives of Civil and Mechanical Engineering IX (1) (2009) 111–117.
  • [8] E.Ferrier,L.Michel,B.Jurkiewiez,P.Hamelin,Creepbehaviorof adhesives used for external FRP strengthening of RC structures, Construction and Building Materials 25 (2) (2011) 461–467
  • [9] F. Khan, C. Yeakle, Experimental investigation and modeling of non-monotonic creep behavior in polymers, International Journal of Plasticity 27 (2011) 512–521.
  • [10] F. Khadraoui, Creep and shrinkage behavior of CFRP-reinforced mortar, Construction and Building Materials 28 (1) (2012) 282–286.
  • [11] H.L. Cox, The elasticity and strength of paper and other fibrous materials, British Journal of Applied Physics 3 (1952) 72–79.
  • [12] D. McLean, Viscous flow of aligned composites, Journal of Materials Science 7 (1972) 98–104.
  • [13] H. Fukuda, T.W. Chou, An advanced shear-lag model applicable to discontinuous fiber composites, Journal of Composite Materials 1 (15) (1981) 79–91.
  • [14] H. Lilholt, Creep of fibrous composite materials, Composite Science and Technology 22 (1985) 277–294.
  • [15] M. McLean, Creep deformation of metal matrix composites, Composite Science and Technology 23 (1985) 37–52.
  • [16] Y.S. Lee, T.J. Batt, P.K. Liaw, Stress analysis of a composite material with short elastic fibre in power law creep matrix, International Journal of Mechanical Sciences 32 (10) (1990) 801–815.
  • [17] J.R. Pachalis, J. Kim, T.W. Chou, Modeling of creep of aligned short-fiber reinforced ceramic composites, Composite Science and Technology 37 (1990) 329–346.
  • [18] Y.R. Wang, T.W. Chou, Analytical modeling of creep of short fiber reinforced ceramic matrix composite, Journal of Composite Materials 26 (9) (1992) 1269–1286.
  • [19] X.L. Gao, K. Li, A shear-lag for carbon nanotube-reinforced polymer composites, International Journal of Solids and Structures 42 (2005) 1649–1667.
  • [20] M. Mondali, A. Abedian, A. Ghavami, A new analytical shearlag based model for prediction of the steady state creep deformations of some short fiber composites, Materials and Design 30 (2009) 1075–1084.
  • [21] C.H. Hsueh (Ed.), Journal of Materials Science, 30, 1995, pp. 219–224.
  • [22] C.H. Hsueh, R.J. Young, X. Yang, P.F. Becher, Stress transfer in a model composite containing a single embedded fiber, Acta Materialia 45 (4) (1997) 1469–1476.
  • [23] Z. Jiang, X. Liu, G. Li, J. Lian, A new analytical model for three-dimensional elastic stress fi ne distribution in short fibre composite, Materials Science and Engineering A 366 (2004) 381–396.
  • [24] T.L. Dragon, W.D. Nix, Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fieom reinforced metals, Acta Metallurgica et Materialia 38 (10) (1990) 1941–1953.
  • [25] Y.H. Park, J.W. Holmes, Finite element modeling of creep deformation in fibre-reinforced ceramic composites, Journal of Materials Science 27 (23) (1992) 6341–6351.
  • [26] L.C. Davis, J.E. Allison, Micromechanics effects in creep of metal-matrix composites, Metallurgical and Materials Transactions A 26 (12) (1995) 3081–3089.
  • [27] S.L. Atkins, J.C. Gibeling, A finite element model of the effects of primary creep in an Al–SiC metal matrix composite, Metallurgical and Materials Transactions A 26 (12) (1995) 3067–3079.
  • [28] D.V. Kolluru, T.M. Pollock, Numerical modeling of the creep behavior of unidirectional eutectic composites, Acta Materialia 46 (8) (1998) 2859–2876.
  • [29] Y. Zhu-feng, Statistic modeling of the creep behavior of metal matrix composites based on finite element analysis, Applied Mathematics and Mechanics 23 (4) (2002) 421–434.
  • [30] M. Mondali, A. Abedian, S. Adibnazari, FEM study of the second stage creep behavior of Al6061/SiC metal matrix composite, Computational Materials Science 34 (2005) 140–150.
  • [31] A. Ghavami, A. Abedian, M. Mondali, Finite difference solution of steady state creep deformations in a short fiber composite in presence of fiber/matrix debonding, Materials and Design 31 (2010) 2616–2624.
  • [32] B. Ji, T. Wang, Plastic constitutive behavior of short-fiber/particle reinforced composites, International Journal of Plasticity 19 (2003) 565–581.
  • [33] Z. Kowal, The effect of transverse forces on creeping buckling of viscoelastic compressed columns, Archives of Civil and Mechanical Engineering V (2) (2005) 13–23.
  • [34] C.C. Huang, M.K. Wei, S. Lee, Transient and steady-state nanoindentation creep of polymeric materials, International Journal of Plasticity 27 (2011) 1093–1102.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4130bf78-f56a-4c2f-91d7-901ac1a75272
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.