PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of material behaviour under monotonic tension using a Digital Image Correlation system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reports behaviour of engineering materials for different kinds of notches, i.e. having U, V shapes. Their variants with respect to dimensions are illustrated in static and fatigue tests. The influence of these types of geometrical imperfections on material fatigue is presented using variations of the Wöhler curve, number of cycles to failure and the fatigue notch factor. Results of experiments conducted by the use of the Digital Image Correlation system called 4M Aramis are illustrated. Courses of tensile characteristics of the 41Cr4 steel, obtained by means of both techniques: extensometer and DIC are compared. They indicated that the DIC technique can be a good tool for determination of mechanical properties. The equivalent strain full-field distributions on specimens tensioned with and without imperfections up to material fracture are presented. The influence of U and V notches on variations of tensile curves is shown.
Rocznik
Strony
857—871
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Motor Transport Institute, Centre for Material Testing, Warsaw, Poland
Bibliografia
  • 1. Andersson M., 2013, The influence of notches on fatigue of heat treated sintered steel, EURO PM 2013, Gothenburg, 6 p.
  • 2. Bennett J.A., Weinberg J.G., 1954, Fatigue notch sensitivity of some aluminium alloys, Journal of Research of the National Bureau of Standards, 52, 5, 235-245
  • 3. Boroński D., 2007, Methods for Examination of Strain and Stress under Fatigue of Material and Structures (in Polish), Institute for Sustainable Technologies, National Research Institute, Bydgoszcz-Radom, Poland, 190 p.
  • 4. Chu T.C., Ranson W.F., Sutton M.A, Peters W.H., 1985, Application of digital-image-correlation techniques to experimental mechanics, Experimental Mechanics, 25, 3, 232-244
  • 5. Chen C., 2004, General theory, ME631, UAF, 15 p.
  • 6. da Silva B.L., Ferreira J.L.A., Arajo J.A., 2012, Influence of notch geometry on the estimation of the stress intensity factor threshold by considering the Theory of Critical Distances, International Journal of Fatigue, 42, 258-270
  • 7. DuQuensay D.L., Topper T.H., Yu M.T., 1986, The effect of notch radius on the fatigue notch factor and the propagation of short cracks, [In:] The Behaviour of Short Fatigue Cracks, Edited by K.J. Miller and E.R. de los Rios, EGF Pub., Mechanical Engineering Publications, London, 323-335
  • 8. Durif E., Réthoré J., Combescure A., Fregonese M., Chaudet P., 2012, Controlling stress intensity factors during a fatigue crack propagation using digital image correlation and a load shedding procedure, Experimental Mechanics, 52, 8, 1021-1031
  • 9. Fatemi A., Fang D., Zeng Z., 2002, Notched fatigue behaviour under axial and torsion loads: experiment and predictions, 8th International Fatigue Congress, Stockholm, Sweden, 3, 1905-1914
  • 10. Fatemi A., Zeng Z., Plaseied A., 2004, Fatigue behaviour and life predictions on notched specimens made of QT and forged microalloyed steels, International Journal of Fatigue, 26, 6, 663-672
  • 11. Filippini M., 2000, Stress gradient calculations at notches, International Journal of Fatigue, 22, 5, 397-409
  • 12. Forster J., Theobald A., Engel S., Pasmann R., 2012, Using optical measuring system for identification of material parameters for Finite Element Analysis, 11. LS-DYNA, Ulm, Germany, 9 p.
  • 13. Gower M.R., Shaw R.M., 2010, Towards a planar cruciform specimen for biaxial characterization of polymer matrix composites, Applied Mechanics and Materials, 24-25, 115-120
  • 14. Kamaya M., Kawakubo M., 2011, A procedure for determining the true stress-strain curve over a large range of strains using digital image correlation and finite element analysis, Mechanics of Materials, 43, 5, 243–253
  • 15. Lanning D.B., Haritos G.K., Nicholas T., 1999, Influence of stress state on high cycle fatigue of notched Ti-6Al-4V specimens, International Journal of Fatigue, 21, 1, S87-S95
  • 16. Lord J.D., 2009, Digital Image Correlation (DIC), Modern stress and strain analysis, [In:] A State of the Art Guide to Measurement Techniques, BSSM Technical Editors: J. Eaton Evans, J.M. Dulie-Barton, R.L. Burguete, 14-15
  • 17. Maruno Y., Miyahara H., Noguchi H. and Ogi K., 2004, Notch size effects in the fatigue characteristics of Al-Si-Cu-Mg cast alloy, Materials Transactions, 45, 3, 839-843
  • 18. Mazdumar P.K., Lawrence F.V. Jr., 1981, An analytical study of the fatigue notch size effect, A Report of the Fracture Control Program, College of Engineering, University of Illinois, Urbana, Illinois 6180
  • 19. Milke J.G., Beuth J.L., Biry N.E., 2000, Notch strengthening in titanium alumini dies under monotonic loading, Experimental Mechanics, 4, 4, 415-424
  • 20. Neuber H., 1958, Kerbspannungslehre, 2nd ed., Berlin, Springer-Verlag
  • 21. Neuber H., 1961, Theory of Notch Stresses, Office of Technical Services, U.S. Department of Commerce, Washington, DC
  • 22. Olszak W., 1965, Theory of Plasticity, PWN, Warsaw
  • 23. Peterson R.E., 1959, Analytical approach to stress concentration effect in fatigue of aircraft materials, Proceedings on Fatigue of Aircraft Structure, WADC Technical Report No. 59-507, August 1959, 273-299
  • 24. Pilkey W.D., 1997, Peterson’s Stress Concentration Factors, Wiley, New York
  • 25. Pluvingae G., Gjonaj M., 2001, Notch Effects in Fatigue and Fracture, NATO Science Series, Series II: Mathematics, Physics and Chemistry, 11, Springer Science+Business Media, B.V.
  • 26. Qian G., Hong Y., Zhou Ch., 2010, Investigation of high cycle and very-high-cycle fatigue behaviors for a structural steel with smooth and notched specimens, Engineering Failure Analysis, 17, 7-8, 1517-1525
  • 27. Siebel E., Stieler M., 1955, Ungleichformige spannungsverteilung bei schwingender beanspruchung, Zeitschrift des Vereines Deutscher Ingenieure, VDI-Z, 97, 5, 121-126
  • 28. Topper T.H., Wetzel R.M., Morrow J., 1967, Nuber’s rule applied to fatigue of notched specimens, Report No. NAEC-ASL-1114, Aeronautical Structures Laboratory, 15 p.
  • 29. Toussaint F., Tabourot l., Vacher P., 2008, Experimental study with a Digital Image Correlation (DIC) method and numerical simulation of an anisotropic elastic-plastic commercially pure titanium, Archives of Civil and Mechanical Engineering, 8, 3, 131-143
  • 30. Wahl A.M., Beuwkes R., Pittsburgh E., 1930, Stress concentration produced by holes and notches, Applied Mechanics, 56, 11, 617-623
  • 31. Westergaard H.M., 1952, Theory of Elasticity and Plasticity, New York, John Wiley
  • 32. Whaley R.E., 1964, Fatigue and static strength of notched and un-notched aluminium alloy and steel specimens, Experimental Mechanics, 329-334
  • 33. www.gom.com
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-412cbb86-a80d-4c3e-8850-e43d48778215
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.