PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element analysis of mini-plate stabilization of human mandible angle fracture – a comparative study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this study was to analyze three patterns of mandible angle fracture treatment by means of the finite element analysis. Methods: Investigation has been based on the mandible geometry reconstructed with use of hospitalized patient CT data. The KLS Martin mini-plates with corresponding screws were used to establish proper fracture stabilization. Models were run assuming isotropic and elasto-plastic material properties of connecting devices and cortical bone. The main masticatory muscles and artificial temporomandibular joint have been incorporated to assure mandible physiological movement. The gage loading has been applied in three different locations to cover wider range of possible mastication loading cases during daily routine. A different contact conditions have been applied to the fracture plane to simulate both load bearing and sharing behaviors. Prepared FEM models reflect the most frequently used surgery’s approaches to mandible angle fracture treatment. A specific nomenclature has been introduced to describe particular model. The tension plate, with one connecting mini-plate, two-point fixation and combined fixation, both using two mini-plates respectively. Results: Performed analysis allowed for a detailed estimation of the mini-plate connection response under the applied gauge loading. The equivalent stress within the mini-plates and surrounding cortical bone have been compared between all models. Regarding the fracture plane, the contact status and pressure have been considered. Conclusions: The combined fixation model, acting as a biplanar fastener system, presents the highest flexibility and connection efficiency.
Rocznik
Strony
105--116
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, ul. Nowowiejska 24, 00-665, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Division of Strength of Materials and Structures, Warsaw, Poland
  • Medical University of Warsaw, Warsaw, Poland
Bibliografia
  • [1] ANSYS HELP, ANSYS Inc., Release 17.1.
  • [2] ARBAG H., KORKMAZ H.H., OZTURK K., UYAR Y., Comparative Evaluation of Different Miniplates for Internal Fixation of Mandible Fractures Using Finite Element Analysis, Journal of Oral and Maxillofacial Surgery, 2008, 66 (6), 1225–1232.
  • [3] Arbeitsgemeinschaft für Osteosynthesefragen, Surgery reference.
  • [4] Atlas of stress–strain curves (2nd ed.), ASM International, Materials Park, OH, 2002.
  • [5] BAŃCZEROWSKI J., WĄDOŁOWSKI P., KRZESIŃSKI G., GUTOWSKI P., Modelling and strength analysis of a mandible miniplate, Surface Engineering, IMP Warsaw, 2016, 21 (1), 30–40.
  • [6] BOFFANO P., ROCCIA F., ZAVATTERO E., DEDIOL E., UGLESIC V., KOVACIC Z., VESNAVER A., KONSTANTINOVIC V.S., PETROVIC M., STEPHENS J., KANZARIA A., BHATTI N., HOLMES S., PECHALOVA P.F., BAKARDJIEV A.G., MALANCHUK V.A., KOPCHAK A.V., GALTELAND P., MJOEN E., SKJELBRED P., GRIMAUD F., FAUVEL F., LONGIS J., CORRE P., LOES S., LEKVEN N., LAVERICK S., GORDON P., TAMME T., AKERMANN S., KARAGOZOGLU K.H., KOMMERS S.C., MEIJER B., FOROUZANFAR T., European Maxillofacial Trauma (EURMAT) in children: A multicenter and prospective study, Oral Surgery Oral Medicine Oral Pathology Oral Radiology, 2015, 119 (5), 499–504.
  • [7] BOYER R., WELSCH G., COLLINGS E.W., Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994.
  • [8] BUJTAR P., SIMONOVICS J., VARADI K., SANDOR G.K.B., AVERY C.M.E., The biomechanical aspects of reconstruction for segmental defects of the mandible: A finite element study to assess the optimization of plate and screw factors, Journal of Cranio-Maxillofacial Surgery, 2014, 42 (6), 855–862.
  • [9] CHAMPY M., LODDE J., SCHMITT R., JAEGER J., MUSTER D., Mandibular Osteosynthesis by Miniature Screwed Plates Via a Buccal Approach, Journal of Maxillofacial Surgery, 1978, 6 (1), 14–21.
  • [10] CHOI A., BEN-NISSAN B., CONWAY R., Three-dimensional modelling and finite element analysis of the human mandible during clenching, Australian Dental Journal, 2005, 50 (1), 42–48.
  • [11] DING X., LIAO S., ZHU X., WANG H., ZOU B., Effect of orthotropic material on finite element modeling of completely dentate mandible, Materials and Design, 2015, 84, 144–153.
  • [12] HARADA K., WATANABE M., OHKURA K., ENOMOTO S., Measure of bite force and. occlusal contact area before and after bilateral sagittal split ramus osteotomy of the mandible using a new pressure-sensitive device: A preliminary report, Journal of Oral and Maxillofacial Surgery, 2000, 58 (4), 370–373.
  • [13] ICHIM I., KIESER J.A., SWAIN M.V., Functional significance of strain distribution in the human mandible under masticatory load: Numerical predictions, Archives of Oral Biology, 2007, 52 (5), 465–473.
  • [14] JOSHI U., KURAKAR M., Comparison of Stability of Fracture Segments in Mandible Fracture Treated with Different Designs of Mini-Plates Using FEM Analysis, Journal of Maxillofacial and Oral Surgery, 2014, 13 (3), 310–319.
  • [15] KROMKA M., MILEWSKI G., Experimental and numerical approach to chosen types of mandibular fractures cured by means of miniplate osteosynthesis, Acta Bioeng. Biomech., 2007, 9 (2), 49–54.
  • [16] KROMKA-SZYDEK M., JĘDRUSIK-PAWŁOWSKA M., MILEWSKI G., LEKSTON Z., CIEŚLIK T., DRUGACZ J., Numerical analysis of displacements of mandible bone parts using various elements for fixation of subcondylar fractures, Acta Bioeng. Biomech., 2010, 12 (1), 11–18.
  • [17] LANGENBACH G., HANNAM A., The role of passive muscle tensions in a three-dimensional dynamic model of the human jaw, Archives of Oral Biology, 1999, 44 (7), 557–573.
  • [18] LEE K., Global trends in maxillofacial fractures, Craniomaxillofacial Trauma Reconstruction, 2012, 5, 213–222.
  • [19] LIU Y., FAN Y., JIANG X., BAUR D.A., A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis, BioMedical Engineering OnLine, 2017, 16, 131.
  • [20] O’MAHONY A., WILLIAMS J., KATZ J., SPENCER P., Anisotropic elastic properties of cancellous bone from a human edentulous mandible, Clinical Oral Implants Research, 2000, 11 (5), 415–421.
  • [21] PUTZ R., PABST R., Atlas Sobotta Atlas der Anatomie des Menschen, Elsevier GmbH, Munich 2006.
  • [22] RAMOS A., DUARTE R.J., MESNARD M., Prediction at long-term condyle screw fixation of temporomandibular joint implant: A numerical study, Journal of Cranio-Maxillofacial Surgery, 2015, 43 (4), 469–474.
  • [23] SCHWARTZ-DABNEY C., DECHOW P., Variations in cortical material properties throughout the human dentate mandible, American Journal of Physical Anthropology, 2003, 120 (3), 252–277.
  • [24] TORREIRA M., FERNANDEZ J., A three-dimensional computer model of the human mandible in two simulated standard trauma situations, Journal of Cranio-Maxillofacial Surgery, 2004, 32 (5), 303–307.
  • [25] WORTHINGTON P., CHAMPY M., Monocortical Miniplate Osteosynthesis, Otolaryngology Clinics of North America, 1987, 20 (3), 607–620.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-412c44d2-ff79-4697-9f01-034c6e5f6861
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.