PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of single- and multi-step shear stress relaxations of isotropic magnetorheological elastomer using fractional derivative viscoelastic models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents numerical simulations of single- and multi-step shear stress relaxations of isotropic magnetorheological elastomer (MRE) using fractional derivative Maxwell and Kelvin–Voigt viscoelastic models. The isotropic MRE has been fabricated by filling micro-sized carbonyl iron particles in silicone rubber. Fractional derivative Maxwell and Kelvin–Voigt viscoelastic models were used to fit the experimental data of the isotropic MRE measured by single- and multi-step relaxation tests at different constant strains and external magnetic fields. The fractional Maxwell viscoelastic model showed a relatively large difference between the measured and calculated results. The fractional Kelvin–Voigt model was fitted well with the experimental data of the isotropic MRE at various constant strain levels under different magnetic fields in both single- and multi-step shear stress relaxations. The calculated shear stress with the long-term prediction is in excellent agreement with the measured one. Therefore, the fractional derivative Kelvin–Voigt viscoelastic model is applicable to predict the long-term stress relaxation of the isotropic MRE.
Rocznik
Strony
251--266
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Applied Mechanics, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
  • Department of Applied Mechanics, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
  • Department of Applied Mechanics, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
Bibliografia
  • 1. Z. Rigbi, L. Jilken, The response of an elastomer filled with soft ferrite to mechanical and magnetic influences, Journal of Magnetism and Magnetic Materials, 37, 3, 267–276, 1983.
  • 2. A.K. Bastola, A review on magneto-mechanical characterizations of magnetorheological elastomers, Composites Part B: Engineering, 200, 108348, 2020.
  • 3. A.G. Díez, C.R. Tubio, J.G. Etxebarria, S. Lanceros-Mendez, Magnetorheological elastomer-based materials and devices: state of the art and future perspectives, Advanced Engineering Materials, 23, 6, 2100240, 2021.
  • 4. H.X. Deng, X.L. Gong, Application of magnetorheological elastomer to vibration absorber, Communications in Nonlinear Science and Numerical Simulation, 13, 1938–1947, 2008.
  • 5. P. Gao, H. Liu, C. Xiang, P. Yan, T. Mahmoud, A new magnetorheological elastomer torsional vibration absorber: structural design and performance test, Mechanical Sciences, 12, 1, 321–332, 2021.
  • 6. A.K. Bastola, L. Li, A new type of vibration isolator based on magnetorheological elastomer, Materials & Design, 157, 431–436, 2018.
  • 7. S. Liu, L. Feng, D. Zhao, X. Shi, Y. Zhang, J. Jiang, et al., A real-time controllable electromagnetic vibration isolator based on magnetorheological elastomer with quasi-zero stiffness characteristic, Smart Materials and Structures, 28, 8, 085037, 2019.
  • 8. T. Hu, S. Xuan, L. Ding, X. Gong, Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer, Materials & Design, 156, 528–537, 2018.
  • 9. H. Böse, T. Gerlach, J. Ehrlich, Magnetorheological elastomers – An underestimated class of soft actuator materials, Journal of Intelligent Material Systems and Structures, 32, 14, 1550-1564, 2021.
  • 10. I.L. Lapipo, J.D. Fadly, W.F. Faris, Characterization of magnetorheological elastomer (MRE) engine mounts, Materials Today: Proceedings, 3, 411–418, 2016.
  • 11. C. Wu, Q. Zhang, X. Fan, Y. Song, Q. Zheng, Smart magnetorheological elastomer peristaltic pump, Journal of Intelligent Material Systems and Structures, 30, 7, 1084–1093, 2019.
  • 12. M. Lapine, I.V. Shadrivov, D.A. Powell, Y.S. Kivshar, Magnetoelastic metamaterials, Nature Materials, 11, 1, 30–33, 2012.
  • 13. R.L. Harne, Y. Deng, M.J. Dapino, Adaptive magnetoelastic metamaterials: A new class of magnetorheological elastomers, Journal of Intelligent Material Systems and Structures, 29, 2, 265–278, 2018.
  • 14. A.K. Bastola, M. Hossain, The shape–morphing performance of magnetoactive soft materials, Materials & Design, 211, 110172, 2021.
  • 15. N. Bira, P. Dhagat, J.R. Davidson, A review of magnetic elastomers and their role In soft robotics, Frontiers in Robotics and AI, 7, 146, 2020.
  • 16. A.F.M.S. Amin, A. Lion, S. Sekita, Y. Okui, Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: experimental identification and numerical verification, International Journal of Plasticity, 22, 1610–1657, 2006.
  • 17. L.Wang, Y. Han, Compressive relaxation of the stress and resistance for carbon nanotube filled silicone rubber composite, Composites Part A: Applied Science and Manufacturing, 47, 63–71, 2013.
  • 18. S. Qi, M. Yu, J. Fu, M. Zhu, Stress relaxation behavior of magnetorheological elastomer: experimental and modeling study, Journal of Intelligent Material Systems and Structures, 29, 205–213, 2018.
  • 19. M.A.F. Johari, S.A. Mazlan, N.A. Nordin, S.A.A. Aziz, N. Johari, N. Nazmi, K. Homma, Shear band formation in magnetorheological elastomer under stress relaxation, Smart Materials and Structures, 30, 4, 045015, 2021.
  • 20. M.A.F. Johari, S.A. Mazlan, M.M. Nasef, U. Ubaidillah, N.A. Nordin, S.A.A. Aziz, N. Johari, N. Nazmi, Microstructural behavior of magnetorheological elastomer undergoing durability evaluation by stress relaxation, Scientific Reports, 11, 1, 1–17, 2021.
  • 21. T.H. Nam, I. Petríková, B. Marvalová, Experimental and numerical research of stress relaxation behavior of magnetorheological elastomer, Polymer Testing, 93, 106886, 2021.
  • 22. T.H. Nam, I. Petríková, B. Marvalová, Effects of loading rate, applied shear strain, and magnetic field on stress relaxation behavior of anisotropic magnetorheological elastomer, Mechanics of Advanced Materials and Structures, 29, 20, 2984–2998, 2022.
  • 23. X. Guo, G. Yan, L. Benyahia, S. Sahraoui, Fitting stress relaxation experiments with fractional Zener model to predict high frequency moduli of polymeric acoustic foams, Mechanics of Time-Dependent Materials, 20, 4, 523–533, 2016.
  • 24. T.A. Nadzharyan, S.A. Kostrov, G.V. Stepanov, E.Y. Kramarenko, Fractional rheological models of dynamic mechanical behavior of magnetoactive elastomers in magnetic fields, Polymer, 142, 316–329, 2018.
  • 25. A. Bonfanti, J.L. Kaplan, G. Charras, A. Kabla, Fractional viscoelastic models for power-law materials, Soft Matter, 16, 26, 6002–6020, 2020.
  • 26. H. Xu, X. Jiang, Creep constitutive models for viscoelastic materials based on fractional derivatives, Computers & Mathematics with Applications, 73, 6, 1377–1384, 2017.
  • 27. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models, Imperial College Press, London, 2010.
  • 28. F. Mainardi, G. Spada, Creep, relaxation and viscosity properties for basic fractional models in rheology, The European Physical Journal Special Topics, 193, 1, 133–160, 2011.
  • 29. T.H. Nam, I. Petríková, B. Marvalová, Experimental characterization and viscoelastic modeling of isotropic and anisotropic magnetorheological elastomers, Polymer Testing, 81, 106272, 2020.
  • 30. X. Su, W. Xu, W. Chen, H. Yang, Fractional creep and relaxation models of viscoelastic materials via a non-Newtonian time-varying viscosity: physical interpretation, Mechanics of Materials, 140, 103222, 2020.
  • 31. M. Niedziela, J. Wlazło, Notes on computational aspects of the fractional-order viscoelastic model, Journal of Engineering Mathematics, 108, 1, 91–105, 2018.
  • 32. R. Garrappa, Numerical evaluation of two and three parameter Mittag–Leffler functions, SIAM Journal of Numerical Analysis, 53, 3, 1350–1369, 2015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-412c199c-dedc-4210-9ae8-199a51be5f73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.