PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mutually Orthogonal Golay Complementary Sequences in Synthetic Aperture Imaging Systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of this study is to improve the ultrasound image by employing a new algorithm based on transducer array element beam pattern correction implemented in the synthetic transmit aperture (STA) method combined with emission of mutually orthogonal complementary Golay sequences. Orthogonal Golay sequences can be transmitted and received by different transducer elements simultaneously, thereby decreasing the time of image reconstruction, which plays an important role in medical diagnostic imaging. The paper presents the preliminary results of computer simulation of the synthetic aperture method combined with the orthogonal Golay sequences in a linear transducer array. The transmission of long waveforms characterized by a particular autocorrelation function allows to increase the total energy of the transmitted signal without increasing the peak pressure. It can also improve the signal-to-noise ratio and increase the visualization depth maintaining the ultrasound image resolution. In the work, the 128-element linear transducer array with a 0.3 mm pitch excited by 8-bits Golay coded sequences as well as one cycle at nominal frequencies of 4 MHz were used. The comparison of 2D ultrasound images of the phantoms is presented to demonstrate the benefits of a coded transmission. The image reconstruction was performed using the synthetic STA algorithm with transmit and receive signals correction based on a single element directivity function.
Rocznik
Strony
283--289
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
  • Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warszawa, Poland
Bibliografia
  • 1. Bae M.-H., Lee W.-Y., Jeong M.-K., Kwon S.-J. (2002), Orthogonal Golay code based ultrasonic imaging without reducing frame rate, in Proc. 2003 IEEE Utrasonic Symp., 2, Oct. 1705–1708.
  • 2. Chan V., Perlas A. (2014), Basics of Ultrasound Imaging, Chapter 2, 13–19, [in:] Atlas of Ultrasound-Guided Procedures in Interventional Pain Management, Narouze S.N. [Ed.], Springer, New York.
  • 3. Chiao R.Y., Thomas L.J. (2000), Synthetic transmit aperture imaging using orthogonal Golay coded excitation, Proc. IEEE Ultrason. Symp., 1677–1680.
  • 4. Gan L., Li K., Ling C. (2012), Golay meets Hadamard: Golay-paired Hadamard matrices for fast compressed sensing, IEEE Information Theory Workshop (ITW 2012), Sept. 637–641.
  • 5. Golay M.J.E. (1961), Complementary series, IRE Tran. Inf. Theory, IT-7, 82–87.
  • 6. Huang X. (2006), Complementary properties of Hadamard matrices, roc. Int. Conf. Commun., Circuits and Systems 2006, 1, Jun. 588–592.
  • 7. Jensen J.A. (1996), Field: A program for simulating Ultrasound Systems, Presented at the 10th Nordic-Baltic Conference on Biomedical Imaging, published in Medical & Biological Engineering & Computing, 34, 1, Part 1, 351–353.
  • 8. Kim B.-H., Kim G.-D., Song T.-K. (2007), A postcompression based ultrasound imaging technique for simultaneous transmit multi-zone focusing, Ultrasonics, 46, 148–154.
  • 9. Kim B.-H., Song T.-K. (2003), Multiple transmit focusing using modified orthogonal Golay codes for small scale systems, Proc. 2003 IEEE Utrasonic Symp., 2, Oct. 1574–1777.
  • 10. Klimonda Z., Lewandowski M., Nowicki A., Trots I. (2005), Direct and post-compressed sound fields for different coded excitations – experimental results, Archives of Acoustics, 30, 4, 507–514.
  • 11. Liu J., Insana M.F. (2005), Coded pulse excitation for ultrasonic strain imaging, IEEE Trans. Ultrason. Ferroelect. Freq. Control, 52, 2, 231–240.
  • 12. Maeda K. (2014), Diagnostic ultrasound safety 2: Physical property of diagnostic ultrasound, J. Health & Med Informatics, 5, 145, doi: 10.4172/2157-7420.1000145.
  • 13. Matrone G., Savoia A.S., Caliano G., Magenes G. (2015), The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging, IEEE Trans. Med. Imag., 34, 4, 940–949.
  • 14. Nowicki A., Secomski W., Litniewski J., Trots I. (2003), On the application of signal compression using Golay’s codes sequences in ultrasound diagnostic, Archives of Acoustics, 28, 4, 313–324.
  • 15. Peng H., Han X., Lu J. (2006), Study on application of complementary Golay code into high frame rate ultrasonic imaging system, Ultrasonics 44, e93–e96.
  • 16. Rabinovich A., Friedman Z., Feuer A. (2013), Multi-line acquisition with minimum variance beam-forming in medical ultrasound imaging, IEEE Trans. Ultrason. Ferroelect. Freq. Control, 60, 12, 2521–2531.
  • 17. Tanter M., Fink M. (2014), Ultrafast imaging in biomedical ultrasound, IEEE Trans. Ultrason. Ferroelect. Freq. Control, 61, 1, 102–119.
  • 18. Tasinkevych Y., Trots I., Nowicki A., Lewin P.A. (2012), Modified synthetic transmit aperture algorithm for ultrasound imaging, Ultrasonics, 52, 333–342.
  • 19. Tasinkevych Y., Klimonda Z., Lewandowski M., Nowicki A., Lewin P.A. (2013), Modified multi-element synthetic transmit aperture method for ultrasound imaging: A tissue phantom study, Ultrasonics, 53, 570–579.
  • 20. Trots I., Nowicki A., Secomski W., Litniewski J. (2004), Golay sequences – side-lobe canceling codes for ultrasonography, Archives of Acoustics, 29, 1, 87–97.
  • 21. Trots I., Nowicki A., Lewandowski M. (2009), Synthetic transmit aperture in ultrasound imaging, Archives of Acoustics, 34, 4, 685–695.
  • 22. Trots I., Nowicki A., Lewandowski M., Tasinkevych Y. (2010), Multi-element synthetic transmit aperture in medical ultrasound imaging, Archives of Acoustics, 35, 4, 687–699.
  • 23. Tseng C.C., Liu C.L. (1972), Complementary sets of sequences, IEEE Trans. Info. Theory, IT-18, 644–652.
  • 24. Yang M., Chakrabarti C. (2012), Design of orthogonal coded excitation for synthetic aperturę imaging in ultrasound systems, in IEEE International Symposium on Circuits and Systems, May.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-412bba18-1e27-47e7-9700-97c55f95ffe4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.