PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polydopamine coating effectively prevents early-stage corrosion of pure magnesium in tissue culture medium

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pure magnesium, free from toxic elements, has been identified as a promising candidate for bioabsorbable orthopaedic devices. However, its rapid corrosion in physiological environments presents a significant challenge for practical applications. Chemical coatings, such as polydopamine (PDA), offer a potential solution to improve the corrosion resistance of pure magnesium. Nevertheless, the reaction conditions must be meticulously optimized, particularly in the presence of salts, as magnesium is highly sensitive to environmental factors. In this study, a PDA coating, widely investigated for improving the corrosion resistance of magnesium alloys, was applied to pure magnesium, avoiding the conventional Tris-HCl buffer. Instead, a 0.01 mol/L NaOH aqueous solution was used successfully to coat PDA layer on the surface of pure magnesium. The corrosion behaviour of PDA-coated magnesium was evaluated using electrochemical measurements and magnesium ion elution profiles in a tissue culture medium containing 5 vol% of fetal bovine serum at 37ºC. The results demonstrated that the PDA coating effectively mitigated early-stage corrosion of the pure magnesium substrate. This method provides a straightforward approach to enhancing the corrosion resistance of pure magnesium, and the PDA layer can also function as an intermediate platform for further biofunctional surface modifications, potentially expanding its applications in biomedical fields.
Rocznik
Strony
2--4
Opis fizyczny
Bibliogr. 36, tab., wykr., zdj.
Twórcy
  • Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
  • Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
  • Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
  • Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
  • Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
  • Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
  • Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
  • Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
Bibliografia
  • [1] Nuevo-Ordóñez Y., Montes-Bayón M., Blanco-González E., Paz--Aparicio J., Raimundez J.D., Tejerina J.M., Peña M.A., Sanz-Medel A.: Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels. Anal Bioanal Chem 401 (2011) 2747–2754.
  • [2] Hiromoto S., Nozoe E., Hanada K., Yoshimura T., Shima K., Kibe T., Nakamura N., Doi K.: In vivo degradation and bone formation behaviors of hydroxyapatite-coated Mg alloys in rat femur. Materials Science & Engineering C 122 (2021) 111942.
  • [3] Biesiekierski A., Wang J., Gepreel M.A., Wen C.: A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 8(5) (2012) 1661-1669.
  • [4] Sae-Mi K., Ji-Hoon J., Sung-Mi L., Min-Ho K., Hyoun-Ee K., Yuri E., Jong-Ho L., Jung-Woo L., Young-Hag K.: Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response. Journal of Biomedical Materials Research A 102 (2013) 429-441.
  • [5] Seitz J.M., Lucas A., Kirschner M.: Magnesium-Based Compression Screws: A Novelty in the Clinical Use of Implants. The Minerals, Metals & Materials Society 68 (2016) 1177-1182.
  • [6] Chen Y., Xu Z., Smith C., Sankar J.: Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia 10 (2014) 4561-4573.
  • [7] Li N., Zheng Y.: Novel Magnesium Alloys Developed for Biomedical Application: A Review. Journal of Materials Science & Technology 29 (2013) 489-502.
  • [8] Kaabi Falahieh Asl S., Nemeth S., Tan M.J.: Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate. Journal of Biomedical Materials Research Part B: Applied Biomaterials 104 (2016) 1643-1657.
  • [9] Kim K.J., Choi S., Sang Cho Y., Yang S.J., Cho Y.S., Kim K.K.: Magnesium ions enhance infiltration of osteoblasts in scaffolds via increasing cell motility. Journal of Materials Science: Materials in Medicine 28 (2017) 96-104.
  • [10] Song G.: Control of biodegradation of biocompatible magnesium alloys. Corrosion Science 49 (2007) 1696-1701.
  • [11] Li L.Y., Cui L.Y., Zeng R.C., Li S.Q., Chen X.B., Zheng Y., Kannan M.B.: Advances in functionalized polymer coatings on biodegradable magnesium alloys - A review. Acta Biomaterialia 79 (2018) 23-36.
  • [12] Ren Y., Babaie E., Bhaduri S.B.: Nanostructured amorphous magnesium phosphate/poly (lactic acid) composite coating for enhanced corrosion resistance and bioactivity of biodegradable AZ31 magnesium alloy. Progress in Organic Coatings 118 (2018) 1-8.
  • [13] Zhen Z., Liu X., Huang T., Xi T., Zheng Y.: Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Materials Science and Engineering C 46 (2015) 202-206.
  • [14] Wong H.M., Yeung K.W.K., Lam K.O., Tam V., Chu P.K., Luk K.D.K.: Cheung K.M.C., A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31 (2010) 2084-2096.
  • [15] Liu J., Liu B., Min S., Yin B., Peng B., Yu Z., Wang C., Ma X., Wen P., Tian Y., Zheng Y.: Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation. Bioactive Materials 16 (2022) 301-319.
  • [16] Lu X., Feng X., Zuo Y., Zhang P., Zhang C.: Improvement of protection performance of Mg-rich epoxy coating on AZ91D magnesium alloy by DC anodic oxidation. Progress in Organic Coatings 104 (2017) 188-198.
  • [17] Narayanan T.S.N.S., Park I.S., Lee M.H.: Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Progress in Materials Science 60 (2014) 1-71.
  • [18] Zheng T., Hu Y., Pan F., Zhang Y., Tang A.: Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method. Journal of Magnesium and Alloys 7 (2019) 193-202.
  • [19] Galio A.F., Lamaka S.V., Zheludkevich M.L., Dick L.F.P., Müller I.L., Ferreira M.G.S.: Inhibitor-doped sol–gel coatings for corrosion protection of magnesium alloy AZ31. Surface and Coatings Technology 204 (2010) 1479-1486.
  • [20] Lee J.Y., Han G., Kim Y.C., Byun J.Y., Jan J.I., Seok H.K., Yang S.J.: Effects of impurities on the biodegradation behavior of pure magnesium. Metals and Materials International 15 (2009) 955-961.
  • [21] Hiromoto S., Yamamoto A.: High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution. Electrochimica Acta 54 (2009) 7085-7093.
  • [22] Song Y., Zhang S., Li J., Zhao C., Zhang X.: Electrodeposition of Ca–P coatings on biodegradable Mg alloy: In vitro biomineralization behavior. Acta Biomaterialia 6 (2010) 1736-1742.
  • [23] Ji X.J., Gao L., Liu J.C., Wang J., Cheng Q., Li J.P., Li S.Q., Zhi K.Q., Zeng R.C., Wang Z.L.: Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys. Colloids and Surfaces B: Biointerfaces 179 (2019) 429-436.
  • [24] Zhou Z., Zheng B., Lang H., Qin A., Ou J.: Corrosion resistance and biocompatibility of polydopamine/hyaluronic acid composite coating on AZ31 magnesium alloy. Surfaces and Interfaces 20 (2020) 100560.
  • [25] Cheng W., Zeng X., Chen H., Li Z., Zeng W., Mei L., Zhao Y.: Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS Nano 13 (2019) 8537-8565.
  • [26] Ju K.Y., Lee Y., Lee S., Park S.B., Lee J.K.: Bioinspired Polymerization of Dopamine to Generate Melanin-Like Nanoparticles Having an Excellent Free-Radical-Scavenging Property. Biomacromolecules 12 (2011) 625-632.
  • [27] ASTM G102-89(2015), Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM International, West Conshohocken, PA, 2015.
  • [28] Putra N.E., Leeflang M.A., Minneboo M., Taheri P., Fratila-Apachitei L.E., Mol J.M.C., Zhou J., Zadpoor A.A.: Extrusion-based 3D printed biodegradable porous iron. Acta Biomaterialia 121 (2021) 741-756.
  • [29] Barclay T.G., Hegab H.M., Clarke S.R., Ginic-Markovic M.: Versatile Surface Modification Using Polydopamine and Related Polycatecholamines: Chemistry, Structure, and Applications. Advance Materials Interfacfes 4 (2017) 1601192.
  • [30] Lee H.A., Ma Y., Zhou F., Hong S., Lee H.: Material-Independent Surface Chemistry beyond Polydopamine Coating. Accounts of Chemical Research 52 (2019) 704-713.
  • [31] Moseley P.T., Tapping G., Rivière J.C.: The oxidation of dilute iron-silicon alloys ([Si] ≤ 1%) in carbon dioxide. Corrosion Science 22 (1982) 69-86.
  • [32] Yao H.B., Le Y., Wee A.T.S.: Passivity behavior of melt-spun Mg–Y Alloys. Electrochimica Acta 48 (2003) 4197-4204.
  • [33] Jönsson M., Persson D., Thierry D.: Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D. Corrosion Science 49 (2007) 1540-1558.
  • [34] Wagener V., Virtanen S.: Protective layer formation on magnesium in cell culture medium. Materials Science and Engineering: C 63 (2016) 341-351.
  • [35] Matsubara H., Ichige Y., Fujita K., Nishiyama H., Hodouchi K.: Effect of impurity Fe on corrosion behavior of AM50 and AM60 magnesium alloys. Corrosion Science 66 (2013) 203-210.
  • [36] Mei D., Lamaka S.V., Lu Z., Zheludkevich M.L.: Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – A critical review. Corrosion Science 171 (2020) 108722.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-412acc1b-3ab1-4b7f-a0bf-3c41613f8201
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.