PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared thermography: Numerical procedures and results

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the work is to develop numerical method for determining coupled thermo-mechanical fields based on experimental data obtained from two cameras working in the visible and infrared mode. The sequence of images recorded by the first camera is used to determine the displacement field on the sample surface using the 2D digital image correlation (DIC) method. The resulting field from DIC analysis in a form of a set of discrete points with the corresponding in-plane displacement vector is used as the input for the next step of analysis, where the coupled temperature field is computed. This paper provides a detailed description of the numerical procedures, that allow, to obtain coupled thermal and mechanical fields together with the specification of experimental data needed for calculations. The presented approach was tested on an experimental data obtained during uniaxial tension of the multicrystalline aluminum. The developed numerical routine has been implemented in dedicated software, which can be used for the testing of materials on both a macro and micro scales.
Rocznik
Strony
630--644
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • [1] T. Gajewski, T. Garbowski, Calibration of concrete parameters based on digital image correlation and inverse analysis, Arch. Civil Mech. Eng. 14 (2014) 170–180.
  • [2] F. Toussaint, L. Tabourot, P. Vacher, Experimental study with a digital image correlation (DIC) method and numerical simulation of an anisotropic elastic-plastic commercially pure titanium, Arch. Civil Mech. Eng. 8 (3) (2008) 131–143.
  • [3] W.H. Peters, W.F. Ranson, Digital imaging techniques in experimental stress analysis, Opt. Eng. 21 (3) (1982) 427–431.
  • [4] T.C. Chu, W.F. Ranson, M.A. Sutton, W.H. Peters, Applications of digital-image-correlation techniques to experimental mechanics, Exp. Mech. 25 (3) (1985) 232–244.
  • [5] M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, S.R. McNeill, Determination of displacements using an improved digital correlation method, Image Vis. Comput. 1 (3) (1983) 133–139.
  • [6] H.A. Bruck, S.R. McNeill, M.A. Sutton, W.H. Peters, Digital image correlation using Newton–Raphson method of partial differential correction, Exp. Mech. 29 (3) (1989) 261–267.
  • [7] B. Pan, K. Qian, H. Xie, A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Meas. Sci. Technol. 20 (2009) 17.
  • [8] B. Pan, Recent progress in digital image correlation, Exp. Mech. 51 (2011) 1223–1235.
  • [9] B. Wang, B. Pan, Subset-based local vs. finite element-based global digital image correlation: a comparison study, Theor. Appl. Mech. Lett. 6 (2016) 200–208.
  • [10] A. Chrysochoos, O. Maisonneuve, G. Martin, H. Caumon, J.C. Chezeaux, Plastic and dissipated work and stored energy, Nucl. Eng. Des. 114 (3) (1989) 323–333.
  • [11] H. Louche, A. Chrysochoos, Thermal and dissipative effects accompanying lüders band propagation, Mater. Sci. Eng. A 307 (1-2) (2001) 15–22.
  • [12] W. Oliferuk, M. Maj, R. Litwinko, L. Urbanski, Thermomechanical coupling in the elastic regime and elasto-plastic transition during tension of austenitic steel, titanium and aluminium alloy at strain rates from 10_4 to 10_1 s_1, Eur. J. Mech. A Solids 35 (2012) 111–118.
  • [13] M.P. Luong, Infrared thermographic scanning of fatigue in metals, Nucl. Eng. Des. 158 (2) (1995) 363–376.
  • [14] B. Wattrisse, J.-M. Muracciole, A. Chrysochoos, Thermomechanical effects accompanying the localized necking of semi-crystalline polymers, Int. J. Therm. Sci. 41 (5) (2002) 422–427.
  • [15] M. Maj, W. Oliferuk, Analysis of plastic strain localization on the basis of strain and temperature fields, Arch. Metall. Mater. 57 (4) (2012) 1111–1116.
  • [16] W. Oliferuk, M. Maj, K. Zembrzycki, Determination of the energy storage rate distribution in the area of strain localization using infrared and visible imaging, Exp. Mech. 55 (2015) 753–760.
  • [17] A. Chrysochoos, B. Wattrisse, J.-M. Muracciole, Y. El Kaïm, Fields of stored energy associated with localized necking of steel, J. Mech. Mater. Struct. 4 (2009) 245–262.
  • [18] T. Pottier, F. Toussaint, H. Louche, P. Vacher, Inelastic heat fraction estimation from two successive mechanical and thermal analyses and full-field measurements, Eur. J. Mech. A/Solids 38 (2013) 1–11.
  • [19] L. Li, J.-M. Muracciole, L. Waltz, L. Sabatier, F. Barou, B. Wattrisse, Local experimental investigations of the thermomechanical behavior of a coarse-grained aluminum multicrystal using combined DIC and IRT methods, Opt. Lasers Eng. 81 (2016) 1–10.
  • [20] P. Knysh, Y.P. Korkolis, Determination of the fraction of plastic work converted into heat in metals, Mech. Mater. 86 (2015) 71–80.
  • [21] L. Bodelot, L. Sabatier, E. Charkaluk, P. Dufrenoy, Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an {AISI} 316l steel, Mater. Sci. Eng. A 501 (1-2) (2009) 52–60.
  • [22] L. Bodelot, L. Sabatier, E. Charkaluk, P. Dufrenoy, Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurement by digital image correlation and infrared thermography, Mech. Mater. 43 (2011) 654–670.
  • [23] Thermocorr. http://www.thermocorr.ippt.pan.pl.
  • [24] Hdf5 library. https://support.hdfgroup.org/hdf5/.
  • [25] D.T. Lee, B.J. Schachter, Two algorithms for constructing a Delaunay triangulation, Int. J. Comput. Inf. Sci. 3 (1980) 219–242.
  • [26] G. Vendroux, W.G. Knauss, Submicron deformation field measurements: Part 2. Improved digital image correlation, Exp. Mech. 38 (2) (1998) 86–92.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4128833e-fef5-4104-b39c-e5a95dd40bc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.