Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Level-2 monthly GRACE gravity field models issued by Center for Space Research (CSR), GeoForschungs Zentrum (GFZ), and Jet Propulsion Laboratory (JPL) are treated as observations used to extract the equivalent water height (EWH) with the robust independent component analysis (RICA). The smoothing radii of 300, 400, and 500 km are tested, respectively, in the Gaussian smoothing kernel function to reduce the observation Gaussianity. Three independent components are obtained by RICA in the spatial domain; the first component matches the geophysical signal, and the other two match the north-south strip and the other noises. The first mode is used to estimate EWHs of CSR, JPL, and GFZ, and compared with the classical empirical decorrelation method (EDM). The EWH STDs for 12 months in 2010 extracted by RICA and EDM show the obvious fluctuation. The results indicate that the sharp EWH changes in some areas have an important global effect, like in Amazon, Mekong, and Zambezi basins.
Wydawca
Czasopismo
Rocznik
Tom
Strony
953--972
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
- Key Laboratory of Surveying and Mapping Technology on Island and Reef of NASMG, Qingdao, China
autor
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
- Key Laboratory of Surveying and Mapping Technology on Island and Reef of NASMG, Qingdao, China
autor
- Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China
autor
- Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China
Bibliografia
- 1.Baur, O., M. Kuhn, and W.E. Featherstone (2009), GRACE-derived ice-mass variations over Greenland by accounting for leakage effects, J. Geophys. Res. 114, B6, B06407, DOI: 10.1029/2008JB006239.
- 2.Bell, A.J., and T.J. Sejnowski (1995), An information-maximization approach to blind separation and blind deconvolution, Neural Comput. 7, 6, 1129-1159, DOI: 10.1162/neco.1995.7.6.1129.
- 3.Bettadpur, S. (2012a), GRACE 327-720 (CSR-GR-03-02), Product specification document, Rev. 4.6, Center for Space Research, The University of Texas at Austin.
- 4.Bettadpur, S. (2012b), UTCSR Level-2 processing standards document for Level-2 product release 0005, GRACE 327-742, Rev. 4.0, Center for Space Research, The University of Texas at Austin.
- 5.Chambers, D.P. (2006), Evaluation of new GRACE time-variable gravity data over the ocean, Geophys. Res. Lett. 33, 17, L17603, DOI: 10.1029/2006GL027296.
- 6.Chen, J.L., C.R. Wilson, B.D. Tapley, Z.L. Yang, and G.Y. Niu (2009), 2005 drought event in the Amazon River Basin as measured by GRACE and estimated by climate models, J. Geophys. Res. 114, B5, B05404, DOI:10.1029/2008JB006056.
- 7.Dahle, C., F. Flechtner, C. Gruber, D. König, R. König, G. Michalak, and K.-H. Neumayer (2012), GFZ GRACE Level-2 processing standards document for Level-2 product release 0005, Sci. Tech. Rep. 12/02, GFZ German Research Centre for Geosciences, Potsdam, DOI: 10.2312/GFZ. b103-12020.
- 8.Davis, J.L., M.E. Tamisiea, P. Elósegui, J.X. Mitrovica, and E.M. Hill (2008), A statistical filtering approach for Gravity Recovery and Climate Experiment (GRACE) gravity data, J. Geophys. Res. 113, B4, B04410, DOI: 10.1029/2007JB005043.
- 9.Duan, X.J., J.Y. Guo, C.K. Shum, and W. van der Wal (2009), On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions, J. Geod. 83, 11, 1095-1106, DOI: 10.1007/s00190-009-0327-0.
- 10.Eshagh, M., J.M. Lemoine, P. Gegout, and R. Biancale (2013), On regularized time varying gravity field models based on GRACE data and their comparison with hydrological models, Acta Geophys. 61, 1, 1-17, DOI: 10.2478/ s11600-012-0053-5.
- 11.Feng, W., J.M. Lemoine, M. Zhong, and T.T. Hsu (2012), Terrestrial water storage changes in the Amazon basin measured by GRACE during 2002-2010, Chinese J. Geophys. 55, 3, 814-812, DOI: 10.6038/j.issn.0001-5733. 2012.03.011 (in Chinese).
- 12.Forootan, E., and J. Kusche (2012), Separation of global time-variable gravity signals into maximally independent components, J. Geod. 86, 7, 477-497, DOI: 10.1007/s00190-011-0532-5.
- 13.Forootan, E., and J. Kusche (2013), Separation of deterministic signals using independent component analysis (ICA), Stud. Geophys. Geod. 57, 1, 17-26, DOI: 10.1007/s11200-012-0718-1.
- 14.Frappart, F., G. Ramillien, P. Maisongrande, and M.-P. Bonnet (2010), Denoising satellite gravity signals by independent component analysis, IEEE Geosci. Remote Sens. Lett. 7, 3, 421-425, DOI: 10.1109/LGRS.2009.2037837.
- 15.Frappart, F., G. Ramillien, M. Leblanc, S.O. Tweed, M.-P. Bonnet, and P. Maisongrande (2011), An independent component analysis filtering approach for estimating continental hydrology in the GRACE gravity data, Remote Sens. Environ. 115, 1, 187-204, DOI: 10.1016/j.rse.2010.08.017.
- 16.Han, S.-C., C.K. Shum, C. Jekeli, and D. Alsdorf (2005), Improved estimation of terrestrial water storage changes from GRACE, Geophys. Res. Lett. 32, 7, L0732, DOI: 10.1029/2005GL022382.
- 17.Huang, J., J. Halpenny, W. van der Wal, C. Klatt, T.S. James, and A. Rivera (2012), Detectability of groundwater storage change within the Great Lakes Water Basin using GRACE, J. Geophys. Res. 117, B8, B08401, DOI: 10.1029/2011JB008876.
- 18.Hyvärinen, A., and E. Oja (2000), Independent component analysis: algorithms and applications, Neural Networks 13, 4-5, 411-430, DOI: 10.1016/S0893-6080(00)00026-5.
- 19.Ivins, E.R., T.S. James, J. Wahr, E.J.O. Schrama, F.W. Landerer, and K.M. Simon (2013), Antarctic contribution to sea level rise observed by GRACE with improved GIA correction, J. Geophys. Res. 118, 6, 3126-3141, DOI:10.1002/jgrb.50208.
- 20.Jekeli, C. (1981), Alternative methods to smooth the Earth’s gravity field, Rep. 327, Dept. Sci. Surv., Ohio State University, Columbus, USA.
- 21.Jutten, C., and J. Herault (1991), Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, Signal Process. 24, 1, 1-10, DOI: 10.1016/0165-1684(91)90079-X.
- 22.Kusche, J. (2007), Approximate decorrelation and non-isotropic smoothing of timevariable GRACE-type gravity field models, J. Geod. 81, 11, 733-749, DOI:10.1007/s00190-007-0143-3.
- 23.Luo, Z.C., Q. Li, and B. Zhong (2012), Water storage variations in Heihe River Basin recovered from GRACE temporal gravity field, Acta Geod. Cartogr. Sin. 41, 676-681 (in Chinese).
- 24.Schrama, E.J.O., and B. Wouters (2011), Revisiting Greenland ice sheet mass loss observed by GRACE, J. Geophys. Res. 116, B2, B02407, DOI: 10.1029/ 2009JB006847.
- 25.Schrama, E.J.O., B. Wouters, and D.A. Lavallée (2007), Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass variations, J. Geophys. Res. 112, B8, B084407, DOI: 10.1029/2006JB004882.
- 26.Stone, J.V. (2004), Independent Component Analysis: A Tutorial Introduction, MIT Press, 193 pp.
- 27.Swenson, S., and J. Wahr (2002), Methods for inferring regional surface-mass anomalies form Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity, J. Geophys. Res. 107, B9, 2193, DOI: 10.1029/2001JB000576.
- 28.Swenson, S., and J. Wahr (2006), Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett. 33, 8, L08402, DOI: 10.1029/2005GL025285.
- 29.Velicogna, I. (2009), Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE, Geophys. Res. Lett. 36, 19, L19503, DOI: 10.1029/2009GL04022.
- 30.Wahr, J., M. Molenaar, and F. Bryan (1998), Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res. 103, B12, 30205-30229, DOI: 10.1029/98JB02844.
- 31.Wahr, J., S. Swenson, and I. Velicogna (2006), Accuracy of GRACE mass estimates, Geophys. Res. Lett. 33, 6, L06401, DOI: 10.1029/2005GL025305.
- 32.Wang, H.-S., Z.-Y. Wang, X.-D. Yuan, P. Wu, and E. Rangelova (2007), Water storage changes in Three Gorges water systems area inferred from GRACE time-variable gravity data, Chinese J. Geophys. 50, 3, 650-657, DOI: 10.1002/cjg2.1078.
- 33.Watkins, M. (2012), JPL Level-2 processing standards document for Level-2 product release 05, GRACE 327-741, Rev. 4.0, Jet Propulsion Laboratory, Pasadena, USA.
- 34.Werth, S., A. Güntner, R. Schmidt, and J. Kusche (2009), Evaluation of GRACE filter tools from a hydrological perspective, Geophys. J. Int. 179, 3, 1499-1515, DOI: 10.1111/j.1365-246X.2009.04355.x.
- 35.Wouters, B., and E.J.O. Schrama (2007), Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics, Geophys. Res. Lett. 34, 23, L23711, DOI: 10.1029/2007GL032098.
- 36.Wouters, B., D. Chambers, and E.J.O. Schrama (2008), GRACE observes smallscale mass loss in Greenland, Geophys. Res. Lett. 35, 20, L20501, DOI: 10.1029/2008GL034816.
- 37.Zarzoso, V., and P. Comon (2010), Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size, IEEE Trans. Neural Networks 21, 2, 248-261, DOI: 10.1109/TNN.2009.2035920.
- 38.Zhan, J.G., Y. Wang, and X.G. Hao (2011), Improved method for removal of correlated errors in GRACE data, Acta Geod. Cartogr. Sin. 40, 442-446 (in Chinese).
- 39.Zhou, X.-H., B. Wu, B.-B. Peng, and H.-Z. Xsu (2006), Detection of global water storage variation using GRACE, Chinese J. Geophys. 49, 6, 1500-1507, DOI: 10.1002/cjg2.977.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41266aae-a6b5-46dc-9129-aaa596453f99