PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and magnetic properties of Fe2O3 nanoparticles for hyperthermia application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main purpose of this publication is to bring closer co-precipitation method of magnetic particles synthesis. Procedure of examining and characterisation of those materials was also shown. Design/methodology/approach: During the work, the properties and possible biomedical application of the material produced were also examined. Surface morphology studies of the obtained particles were made using Zeiss's Supra 35 scanning electron microscope and S/TEM TITAN 80-300 transmission electron microscope. In order to confirm the chemical composition of observed layers, qualitative tests were performed by means of spectroscopy of scattered X-ray energy using the Energy Dispersive Spectrometer (EDS). The Raman spectra of the samples were measured with a InVia Raman microscope by Renishaw. Magnetic properties of hematite nanoparticles were made using VSM magnetometer. Findings: Using VSM magnetometer proved that obtained material is mixture of ferromagnetic and superparamagnetic domain. Practical implications: Magnetic Nanoparticles (MNPs) has been gaining an incrementally increasing interest of scientists in the biomedical areas. Presented materials can be used in the hyperthermia phenomena which can be used in precise cancer treatment. Originality/value: Specific magnetic properties which determinate obtained material to be well for hyperthermia phenomena.
Rocznik
Strony
80--85
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Graduated of the Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology,ul. Towarowa 7, 44-100 Gliwice, Poland
Bibliografia
  • [1] E. Darezereshki, Synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method at room temperature, Materials Letters 64/13 (2010) 1471-1472. DOI: https://doi.org/10.1016/j.matlet.2010.03.064
  • [2] R.M. Fratila J.M. de la Fuente, Introduction to Hyperthermia, in: R.M. Fratila J.M. de la Fuente (eds.), Nanomaterials for Magnetic and Optical Hyperthermia Applications, Elsevier, Amsterdam, 2019, 1-10. DOI: https://doi.org/10.1016/B978-0-12-813928-8.09997-X
  • [3] S. Tong, H. Zhu, G. Bao, Magnetic iron oxide nanoparticles for disease detection and therapy, Materials Today 31 (2019) 86-99. DOI: https://doi.org/10.1016/j.mattod.2019.06.003
  • [4] M.K. Lima-Tenório, E.A. Gómez Pineda, N.M. Ahmad, H. Fessi, A. Elaissari, Magnetic nanoparticles: In vivo cancer diagnosis and therapy, International Journal of Pharmaceutics 493/1-3 (2015) 313-327. DOI: https://doi.org/10.1016/j.ijpharm.2015.07.059
  • [5] Z. Chen, C. Wu, Z. Zhang, W. Wu, X. Wang, Z. Yu, Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles, Chinese Chemical Letters 29/11 (2018) 1601-1608. DOI: https://doi.org/10.1016/j.cclet.2018.08.007
  • [6] A.G. Roca, L. Gutiérrez, H. Gavilán, M.E. Fortes Brollo, S. Veintemillas-Verdaguer, M. del Puerto Morales, Design strategies for shape-controlled magnetic iron oxide nanoparticles, Advanced Drug Delivery Reviews 138 (2019) 68-104. DOI: https://doi.org/10.1016/j.addr.2018.12.008
  • [7] P. Das, M. Colombo, D. Prosperi, Recent advances in magnetic fluid hyperthermia for cancer therapy, Colloids and Surfaces B: Biointerfaces 174 (2019) 42-55. DOI: https://doi.org/10.1016/j.colsurfb.2018.10.051
  • [8] M. Kopeć, M. Roman, M. Kąc, A. Budziak, C. Paluszkiewicz, A. Zarzycki, S. Kąc, E. Dutkiewicz, T. Cichoń, T. Bochnia, W.M. Kwiatek, Investigation of Sediments Causing Damage to Water Meters in a Large Drinking Water Distribution System, Acta Physica Polonica A 133 (2018) 296-301. DOI: http://doi.org/10.12693/APhysPolA.133.296
  • [9] K. Żelechowska, Nanotechnologia w praktyce, PWN, Warszawa, 2019 (in Polish).
  • [10] Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application, Materials and Design 123 (2017) 174-196. DOI: https://doi.org/10.1016/j.matdes.2017.03.036
  • [11] J. Rivas, M. Banobre-Lopez, Y. Pineiro-Redondo, B. Rivas, M. A. Lopez-Quintela, Magnetic nanoparticles for application in cancer therapy, Journal of Magnetism and Magnetic Materials 324/21 (2012) 3499-3502. DOI: https://doi.org/10.1016/j.jmmm.2012.02.075
  • [12] H. Ammari, P. Millien, Shape and size dependence of dipolar plasmonic resonance of nanoparticles, Journal de Mathématiques Pures et Appliquées 129 (2019) 242-265. DOI: https://doi.org/10.1016/j.matpur.2018.12.001
  • [13] L. Zhang, X. Liu, J. Zhou, Tuning Fano resonance by plasmonic core-shell nanostructure, Optics Communications 407 (2018) 137-141. DOI: https://doi.org/10.1016/j.optcom.2017.09.015
  • [14] K. Kaczmarek, T. Hornowski, I. Antal, M. Timko, A. Józefczak, Magneto-ultrasonic heating with nano-particles, Journal of Magnetism and Magnetic Materials 474 (2019) 400-405. DOI: https://doi.org/10.1016/j.jmmm.2018.11.062
  • [15] D. Trpkov, M. Panjan, L. Kopanja, M. Tadić, Hydro-thermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures, Applied Surface Science 457 (2018) 427-438. DOI: https://doi.org/10.1016/j.apsusc.2018.06.224
  • [16] M.W. Marashdeh, B. Ababneh, O.M. Lemine, A. Alsadig, K. Omri, L. El Mir, A. Sulieman, E. Mattarg, The significant effect of size and concentrations of iron oxide nanoparticles on magnetic resonance imaging contrast enhancement, Results in Physics 15 (2019) 102651. DOI: https://doi.org/10.1016/j.rinp.2019.102651
  • [17] T. Tarhana, A. Ulu, M. Sariçam, M. Çulha, B. Ates, Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient L-asparaginase immobilization, International Journal of Biological Macromolecules 142 (2020) 443-451. DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.116
  • [18] A. Pradeep P. Priyadharsini G. Chandrasekaran, Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study, Journal of Magnetism and Magnetic Materials 320/21 (2008) 2774-2779. DOI: https://doi.org/10.1016/j.jmmm.2008.06.012 © 2021 by the authors. Licensee International OCSCO World Press, Gliwice, Poland. This paper
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-412629c8-291c-4fc2-bd97-51e2019cb942
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.