PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Algorithm for modeling electromagnetic channel of seismo-ionospheric coupling (SIC) and the variations in the electron concentration

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present in detail the algorithm of the electrostatic–quasi-stationary–electromagnetic/MHD approximations and equivalent external sources (EQUEMES method) to develop the quasi-stationary–electromagnetic models of seismo-ionospheric coupling. The penetration of the electromagnetic feld created by near-Earth alternative currents of ULF range was simulated by solving equations for the horizontal electric feld components Ex, Ey of the second order with respect to the vertical coordinate z. This system of two second-order equations is derived from the system of Maxwell equations. The penetration of rather strong horizontal electric feld [of order of (1–10) mV/m] to the ionospheric E and F layers has been modeled. The corresponding variations in the electron concentration in the E and lower F layers of the ionosphere reach a value of order of (1–10)%. Farther increase in these variations can be connected with the related synergetic processes. A possibility of the efective initiation of electron concentration perturbations in the unstable near-equatorial plasma in the F layer of the ionosphere by the packet of atmospheric gravity waves radiated by the near-ground source is illustrated. A good correspondence of the results obtained on the basis of this model to the data of satellite observations is shown.
Czasopismo
Rocznik
Strony
253--278
Opis fizyczny
Bibliogr. 87 poz.
Twórcy
  • Physical Faculty, Taras Shevchenko National University of Kyiv, Kiev 03022, Ukraine
  • Space Radio, Diagnostics Research Centre, University of Warmia and Mazury in Olsztyn, Prawochenskiego 9, 10-720 Olsztyn, Poland
  • CIICAp, Autonomous University of State Morelos (UAEM), 62209 Cuernavaca, MOR, Mexico
  • Space Radio, Diagnostics Research Centre, University of Warmia and Mazury in Olsztyn, Prawochenskiego 9, 10-720 Olsztyn, Poland
  • Space Radio, Diagnostics Research Centre, University of Warmia and Mazury in Olsztyn, Prawochenskiego 9, 10-720 Olsztyn, Poland
  • Space Research Institute of RAS (IKI RAS), Moscow, Russia
  • Space Research Institute National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Kiev, Ukraine
  • Physical Faculty, Taras Shevchenko National University of Kyiv, Kiev 03022, Ukraine
Bibliografia
  • 1. Al’pert YL (1972) Propagation of electromagnetic waves and the ionosphere. Nauka Publishing House, Moscow, p 563 (in Russian)
  • 2. Alexandrov AF, Bogdankevich LS, Rukhadze AA (1984) Principles of plasma electrodynamics. Springer, Berlin
  • 3. Alperovich LS, Fedorov EN (2007) Hydromagnetic waves in the magnetosphere and the ionosphere. Springer, Dordrecht, p 426
  • 4. Basu B (2002) On the linear theory of equatorial plasma instability: comparison of different description. J Geophys Res. https://doi.org/10.1029/200ija000317
  • 5. Boardman AD, Rapoport YG, Grimalsky VV, Ivanov BA, Koshevaya SV, Velasco L, Zaspel CE (2005) Excitation of vortices using linear and nonlinear magnetostatic waves. Phys Rev E. https://doi.org/10.1103/physreve.71.026614
  • 6. Boardman AD, Alberucci A, Assanto G, Grimalsky VV, Kibler B, McNiff J, Nefedov I, Rapoport YG, Valagiannopoulos CA (2017) Waves in hyperbolic and double negative metamaterials including rogues and solitons. Nanotechnology 28(44):444001. https://doi.org/10.1088/1361-6528/aa6792
  • 7. Boardman AD, Rapoport YG, Aznakayeva DE, Aznakayev EG, Grimalsky VV, Mei Z (eds) (2019) Graphene metamaterial electron optics: excitation processes and electro-optical modulation: handbook of graphene, vol 3, Chapter 9, pp 264–296. Wiley Publications, Hoboken, p 492
  • 8. Bryunelli BE, Namgaladze AA (1988) Physics of the ionosphere. Nauka, Moscow, p 527 (in Russian)
  • 9. Cheremnykh OK, Klimov SI, Korepanov VE, Koshovy VV, Melnik MO, Ivantyshyn OL, Mezentsev VP, Nogach RT, Rapoport YG, Selivanov YA, Semenov LP (2014) Ground-space experiment for artificial acoustic modification of ionosphere. Some preliminary results. Space Sci Technol 20:60–74. https://doi.org/10.15407/knit2014.06.060(in Russian)
  • 10. Cheremnykh OK, Grimalsky VV, Ivchenko VN, Koshoviy VV, Mezentsev VP, Melnik ME, Ivantishin OL, Nogach RT, Rapoport YuG, Selivanov YuA (2015) Experimental and theoretical investigations of an artificial acoustic modification of the atmosphere and ionosphere. Space Sci Technol 21(1):48–53 (in Ukrainian)
  • 11. Collin RE (1991) Field theory of guided wave. IEEE Press, New York, p 852
  • 12. Denisenko VV, Pomozov EV (2010) Penetration of electric fields from the atmospheric boundary layer into the ionosphere. Solnechno-Zemnaya Fiz 16:70–75
  • 13. Denisenko VV, Boudjada MY, Horn M, Pomozov EV, Biernat HK, Schwingenschuh K, Lammer H, Prattes G, Cristea E (2008) Ionospheric conductivity effects on electrostatic field penetration into the ionosphere. Natl Hazards Earth Syst Sci 8(5):1009–1017. https://doi.org/10.5194/nhess-8-1009-2008
  • 14. Denisenko VV, Ampferer M, Pomozov EV, Kitaev AV, Hausleitner W, Stangl G, Biernat HK (2013) On electric field penetration from ground into the ionosphere. J Atmos Solar Terr Phys 102:341–353. https://doi.org/10.1016/j.jastp.2013.05.019
  • 15. Emelyanov LY, Zivolup TG, Soroka SA, Cheremnykh OK, Chernogor LF (2015) Ground acoustic influence on the ionosphere: the results of observations by means of incoherent scattering and vertical sounding the methods. Radio Phys Radio Astron 20:37–47 (in Russian)
  • 16. Fedorenko AK, Lizunov GV, Rotkel X (2005) Satellite observations of quasiwave perturbations of the atmosphere at the altitudes of the region F caused by strong earthquakes. Geomagn Aeron 45(3):403–410 (in Russian)
  • 17. Fedorenko AK, Bespalova AV, Cheremnykh OK, Kryuchkov EI (2015) A dominant acoustic-gravity mode in the polar thermosphere. Ann Geophys 33:101–108
  • 18. Fedorenko AK, Kryuchkov EI, Cheremnykh OK, Klymenko YO, Yampolski YM (2018) Peculiarities of acoustic-gravity waves in inhomogeneous flows of the polar thermosphere. J Atmos Solar Terr Phys. https://doi.org/10.1016/j.jastp.2018.05.009
  • 19. Genkin LG, Erukhomov LM, Myasnikov EN, Shvartz MM (1987) To the question of formation and floating of isothermic ionospheric and chromospheric bubbles. In: Proceedings of the higher education institutes. Radiophysics, vol. 30, pp 567–577 (in Russian)
  • 20. Gokhberg MB, Shalimov SL (2000) Lithosphere–ionosphere coupling and its modeling. Russ J Earth Sci 2:95–108 (in Russian)
  • 21. Gokhberg MB, Nekrasov AK, Shalimov SL (1996) On the influence of unstable release of green-house gases in the seismically active regions on the ionosphere. Phys Earth 8:52–55 (in Russian)
  • 22. Grimalsky VV, Rapoport YG (2000) Penetration of the electrostatic field from the near-Earth sources into the lower ionospheric layers. Kinemat Phys Celest Bodies 16(1):7–13
  • 23. Grimalsky VV, Kremenetsky IA, Rapoport YuG (1999) Excitation of electromagnetic waves in the lithosphere and their penetration into ionosphere and magnetosphere. J Atmos Electr 19(2):101–117
  • 24. Grimalsky VV, Hayakawa M, Ivchenko VN, Rapoport YuG, Zadoroznii VI (2003) Penetration of electrostatic field from the lithosphere into the ionosphere and its effect on the D-region before earthquake. JASTP 65(4):391–407
  • 25. Gurevich АV (1978) Nonlinear phenomena in the ionosphere. Springer, New York, p 356
  • 26. Gurevich AV, Shvartzburg AB (1973) Nonlinear theory of propagation of radiowaves in the ionosphere. Nauka, Moscow, p 272 (in Russian)
  • 27. Hooke WH (1968) Ionospheric irregularities produced by internal atmospheric gravity waves. J Atmos Terr Phys 30:795–823
  • 28. Huang CS, Kelley C (1996a) Nonlinear evolution of equatorial spread of F1. On the role of plasma instabilities and spatial resonance associated with gravity wave seeding. J Geophys Res 101(A1):283–292
  • 29. Huang CS, Kelley C (1996b) Nonlinear evolution of equatorial spread of F2. Gravity wave seeding of Rayleigh–Taylor instability. J Geophys Res A101(A1):293–302
  • 30. Huang CS, Miller CA, Kelley MC (1994) Basic properties and gravity wave initiation of the midlatitude F region instability. Radio Sci 29:395–405
  • 31. Iyemori T, Nakanishi K, Aoyama T, Yokoyama Y, Koyama Y, Luhr H (2015) Confirmation of existence of the small-scale field-aligned currents in middle and low latitudes and an estimate of time scale of their temporal variation. Geophys Res Lett 42:22–28. https://doi.org/10.1002/2014gl062555
  • 32. Jursa AS (ed) (1985) Handbook of geophysics and the space environment. Air Force Geophysics Laboratory, Ohio, p 1042
  • 33. Kelley MC (2009) The Earth’s ionosphere: plasma physics and electrodynamics. Elsevier, Amsterdam, p 551
  • 34. Kendall PC, Pickering WM (1967) Magnetoplasma diffusion at F2-region altitudes. Planet Space Sci 15:825–833
  • 35. Klimenko MV, Klimenko VV, Zakharenkova IE, Pulinets SA, Zhao B, Tsidilina MN (2011) Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008. Adv Space Res 48:488–499
  • 36. Koshevaya S, Burlak G, Grimalsky V, Perez-Enriquez R, Kotsarenko A (2002) Nonlinear transformation of seismic waves into ULF atmospheric acoustic waves, systems analysis modeling simulations. Gordon Breach J 42:261–268
  • 37. Koshovyy V, Nazarchuk Z, Romanyshyn I, Ivantyshyn O, Lozynskyy A, Soroka S, Alyokhina IL (2005) Acousto-electromagnetic investigations of an acoustical channel of the lithosphere–ionosphere interaction. In: Proceedings of the XXVIIIth general assembly of international union of radio science (URSI), October 23–29, 2005, New Delhi, India
  • 38. Kotsarenko NY, Rapoport YG, Redcoborody YN, Shvidkij AA (1994) Instability of acoustic-gravity waves in an atmosphere with impurities which release and absorb heat. Kinemat Phys Celest Bodies 10(1):61–64
  • 39. Kotsarenko N, Soroka S, Koshevaya S, Koshovy V (1999) Increase of the transparency of the ionosphere for cosmic radiowaves caused by a low frequency wave. Phys Scr 59:174–181
  • 40. Kuo CL, Huba JD, Joyce G, Lee LC (2011) Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J Geophys Res 116:A10317. https://doi.org/10.1029/2011ja016628
  • 41. Lyatsky VB, Maltsev YP (1983) The magnetosphere–ionosphere interaction. Nauka, Moscow, p 192 (in Russian)
  • 42. Molchanov OA, Hayakawa M, Rafalsky VA (1995) Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere, and magnetosphere. J Geophys Res 100A:1691–1712
  • 43. Nenovski PI, Pezzopane M, Ciraolo L, Vellante M, Villante U, De Lauretis M (2015) Local changes in the total electron content immediately before the 2009 Abruzzo earthquake. Adv Space Res 55(1):243–258
  • 44. Nina A, Čadež VM (2013) Detection of acoustic-gravity waves in lower ionosphere by VLF radio waves. Geophys Res Lett 40(18):4803–4807. https://doi.org/10.1002/grl.5093
  • 45. Oikonomou C, Haralambous H, Muslim B (2016) Investigation of ionospheric TEC precursors related to the M7.8 Nepal and M8.3 Chile earthquakes in 2015 based on spectral and statistical analysis. Nat Hazards 83(S1):97–116. https://doi.org/10.1007/s11069-016-2409-7
  • 46. Press WH, Teukolsky SA, Vetterling WT, Flannery BA (1997) Numerical recipes in Fortran 77. Press Syndicate University of Cambridge, New York, p 973
  • 47. Pulinets S (2009) Physical mechanism of the vertical electric field generation over active tectonic faults. Adv Space Res 44:767–773
  • 48. Pulinets S (2011) The synergy of earthquake precursors. Earth Sci 24:535–548
  • 49. Pulinets S, Boyarchuk K (2005) Ionospheric precursors of earthquakes. Springer, Berlin, p 315P
  • 50. Pulinets SA, Boyarchuk KA, Hegai VV, Kim VP, Lomonosov AM (2000) Quasielectrostatic model of atmosphere–thermosphere–ionosphere coupling. Adv Space Res 26(8):1209–1218
  • 51. Pulinets S, Ouzounov D, Papadopoulos G, Rozhnoi A, Kafatos M, Taylor P, Anagnastopoulos G (2011) Multi-parameter precursory activity before L’Aquila earthquake revealed by joint satellite and ground observations American Geophysical Union Fall Meeting, AGU2011, 5–9 December, San Francisco, USA
  • 52. Pulinets SA, Ouzounov D, Davidenko D (2014) Whether an earthquake prediction is possible? Integral technologies of multi-parametric monitoring of geoeffective phenomena in the frames of integral model of coupling in the earth atmosphere and ionosphere, Trovant. https://doi.org/10.17686/sced_rusnauka_2014-1211. https://www.researchgate.net/publication/279058620_Prognoz_zemletrasenij_vozmozen_Integralnye_tehnologii_mnogoparametriceskogo_monitoringa_geoeffektivnyh_avlenij_v_ramkah_kompleksnoj_modeli_vzaimosvazej_v_litosfere_atmosfere_i_ionosfere_Zemli (in Russian)
  • 53. Pulinets SA, Ouzounov DP, Karelin AV, Davidenko DV (2015) Physical bases of the generation of short-term earthquake precursors: a complex model of ionization-induced geophysical processes in the lithosphere–atmosphere–ionosphere–magnetosphere system. Geomag Aeron 55(4):540–558
  • 54. Rapoport Yu, Hayakawa M, Ivchenko VN, Juarez-R D, Koshevaya S, Gotynyan O (2004a) Change of ionospheric plasma parameters under the influence of electric field which has lithospheric origin and due to radon emanation. Phys Chem Earth 29:579–587
  • 55. Rapoport YuG, Gotynyan OE, Ivchenko VN, Kozak LV, Parrot M (2004b) Effect of acoustic-gravity wave of the lithospheric origin on the ionospheric F region before earthquakes. Phys Chem Earth 29:607–616
  • 56. Rapoport YG, Gotynyan OE, Ivchenko VN (2005) Ionosphere response and instabilities in the presence of transformation of energy from the lower atmosphere through the quasielectrostatic and acoustic-gravity channels. In: Fifth Ukrainian conference on space research, 4–11 September 2005, Eupatorium, p 53 (in Russian)
  • 57. Rapoport YG, Gotynyan OE, Ivchenko VN, Hayakawa M, Grimalsky VV, Koshevaya SV, Juarez RD (2006) Modeling electrostatic-photochemistry seismoionospheric coupling in the presence of external currents. Phys Chem Earth Parts A/B/C 31(4–9):437–446. https://doi.org/10.1016/j.pce.2006.02.010
  • 58. Rapoport YuG, Hayakawa M, Gotynyan OE et al (2009) Stable and unstable plasma perturbations in the ionospheric F region, caused by spatial packet of atmospheric gravity waves. Phys Chem Earth 34:508–515
  • 59. Rapoport Y, Selivanov Y, Ivchenko V, Grimalsky V, Fedun V (2011) UK-Ukraine-spain meeting on solar physics and space science, 2011, Alushta, Crimea; Ukraine, August 29-Sept. 2, 2011, p 55
  • 60. Rapoport YG, Cheremnykh OK, Selivanov YA, Fedorenko AK, Ivchenko VM, Grimalsky VV, Tkachenko EN (2012a) Modeling AGW and PEMW in inhomogeneous atmosphere and ionosphere. In: 14th International conference on mathematical methods in electromagnetic theory, MMET 2012, August 2012, Kharkiv; Ukraine. IEEE, pp 28–30
  • 61. Rapoport Y, Boardman A, Grimalsky V, Selivanov Y, Kalinich N (2012b) Metamaterials for space physics and the new method for modeling isotropic and hyperbolic nonlinear concentrators. In: 14th International conference on mathematical methods in electromagnetic theory, MMET 2012, August 2012, Kharkiv, Ukraine. IEEE, pp 76–78
  • 62. Rapoport Y, Boardman A, Grimalsky V, Selivanov Y, Kalinich N (2012c). Metamaterials for space physics and the new method for modeling isotropic and hyperbolic nonlinear concentrators. In: 2012 international conference on mathematical methods in electromagnetic theory. https://doi.org/10.1109/mmet.2012.6331154
  • 63. Rapoport Yu, Selivanov Yu, Ivchenko V, Grimalsky V, Tkachenko E, Fedun V (2014a) Exitation of planetary electromagnetic waves in the inhomogeneous ionosphere. Ann Geophys 32:1–15
  • 64. Rapoport YG, Cheremnykh OK, Grimalsky VV, Selivanov YA, Ivchenko VN, Milinevsky GP, Tkachenko EN, Melnik MO, Mezentsev VP, Karataeva LM, Nogach RT (2014b) Ionosphere as a sensitive indicator of powerful processes in the lower atmosphere/lithosphere, artificial acoustic influence and space weather. In: EMSEV 2014 international conference on electromagnetic phenomena associated with seismic and volcanic activities, Konstancin Jeziorna, Poland, on September 21–27, 2014, Conference Paper book, pp 140–142
  • 65. Rapoport Y, Selivanov Y, Ivchenko V, Grimalsky V, Tkachenko E, Rozhnoi A, Fedun V (2014c) Excitation of planetary electromagnetic waves in the inhomogeneous ionosphere. Ann Geophys 32(4):449–463. https://doi.org/10.5194/angeo-32-449-2014
  • 66. Rapoport YG, Grimalsky VV, Boardman AD, Malnev VN (2014d) Controlling nonlinear wave structures in layered metamaterial, gyrotropic and active media. In: 2014 IEEE 34th international scientific conference on electronics and nanotechnology (ELNANO). https://doi.org/10.1109/elnano.2014.6873959
  • 67. Rapoport YG, Boardman AD, Grimalsky VV, Ivchenko VM, Kalinich N (2014e) Strong nonlinear focusing of light in nonlinearly controlled electromagnetic active metamaterial field concentrators. J Opt 16(5):055202. https://doi.org/10.1088/2040-8978/16/5/055202
  • 68. Rapoport YuG, Cheremnykh OK, Koshovy VV, Melnik MO, Ivantyshyn OL, Nogach RT, Selivanov YuA, Grimalsky VV, Mezentsev VP, Karataeva LM, Ivchenko VM, Milinevsky GP, Fedun VN, Tkachenko EN (2017) Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment. Ann Geophys 35:53–70
  • 69. Rozhnoi A, Solovieva M, Levin B, Hayakawa M, Fedun V (2014a) Meteorological effects in the lower ionosphere as based on VLF/LF signal observations. Natl Hazards Earth Syst Sci 14(10):2671–2679. https://doi.org/10.5194/nhess-14-2671-2014
  • 70. Rozhnoi A, Shalimov S, Solovieva M, Levin B, Shevchenko G, Hayakawa M, Fedun V (2014b) Detection of tsunami-driven phase and amplitude perturbations of subionospheric VLF signals following the 2010 Chile earthquake. J Geophys Res Space Phys 119(6):5012–5019. https://doi.org/10.1002/2014ja019766
  • 71. Rozhnoi A, Solovieva M, Parrot M, Hayakawa M, Biagi P-F, Schwingenschuh K, Fedun V (2015) VLF/LF signal studies of the ionospheric response to strong seismic activity in the Far Eastern region combining the DEMETER and ground-based observations. Phys Chem Earth Parts A/B/C 85–86:141–149. https://doi.org/10.1016/j.pce.2015.02.005
  • 72. Samarskii AA (2001) The theory of difference schemes. Marcel Dekker, New York, p 761
  • 73. Samarskii AA, Nikolaev ES (1989) Numerical methods for grid equations, pp 1–2. Birkhäuser (Translated from Russian)
  • 74. Sanchez-Dulcet F, Rodríguez-Bouza M, Silva HG, Herraiz M, Bezzeghoud M, Biagi PF (2015) Analysis of observations backing up the existence of VLF and ionospheric TEC anomalies before the Mw6.1 earthquake in Greece, January 26, 2014. Phys Chem Earth Parts A/B/C 85–86:150–166. https://doi.org/10.1016/j.pce.2015.07.002
  • 75. Schunk RW, Nagy AF (2010) Ionospheres. Physics, Plasma physics, and chemistry. CUP, Cambridge, p 628
  • 76. Sedunov YS, Avdiushin SI, Borisenkov EP et al (eds)(1991) Atmosphere. Handbook, Gidrometeoizdat, Leningrad, p 509 (in Russian)
  • 77. Sekar R, Raghavarao R (1987) Role of vertical winds on the Rayleigh-Taylor mode instabilities of the night-time equatorial ionosphere. J Atmos Terr Phys 49:981–985
  • 78. Solovieva M, Rozhnoi A, Fedun F, Schwingenschuh K, Hayakawa M (2015) Ionospheric perturbations related to the earthquake in Vrancea area on November 22, 2014, as detected by electromagnetic VLF/LF frequency signals. Ann Geophys 58(5):A0552. https://doi.org/10.4401/ag-6827
  • 79. Sorokin V, Hayakawa M (2013) Generation of seismic-related DC electric fields and lithosphere–atmosphere–ionosphere coupling. Mod Appl Sci 7:1–25
  • 80. Sorokin V, Chmyrev V, Isaev N (1998) A generation model of small-scale geomagnetic field-aligned plasma inhomogeneities in the ionosphere. J Atmos Solar Terres Phys 60(13):1331–1342. https://doi.org/10.1016/s1364-6826(98)00078-9
  • 81. Sorokin VM, Chmirev VM, Yashenko AK (2001) Electrodynamic model of the lower atmosphere and the ionosphere. JASTP 63:681–1691
  • 82. Spiegel MR (1959) Theory and problems of vector analysis and an introduction to tensor analysis. Shnaum Publications, New York, p 223
  • 83. Stangl G, Boudjada MY, Biagi PF, Krauss S, Maier A, Schwingenschuh K, Al-Haddad E, Parrot M, Voller W (2011) Investigation of TEC and VLF space measurements associated to L’Aquila (Italy) earthquakes. Natl Hazards Earth Syst Sci 11:1019–1024
  • 84. Treumann RA, Baumjohann W (1997) Advanced space plasma physics. Imperial College Press, London, p 381
  • 85. Vainshtein LA (1988) Electromagnetic waves. Nauka (in Russian), Moscow
  • 86. Zettergren MD, Snively JB (2013) Ionospheric signatures of acoustic waves generated by transient tropospheric forcing. Geophys Res Lett 40:5345–5349. https://doi.org/10.1002/2013gl058018
  • 87. Zettergren MD, Snively JB (2015) Ionospheric response to infrasonic-acoustic waves generated by natural hazard events. J Geophys Res (Space Phys). https://doi.org/10.1002/2015ja021116
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41251cba-3593-46e9-9274-8af159af1537
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.