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Abstract. In this paper, we give the proposition of didactic discussion on the
existence of solutions of some equations containing expressions with absolute value.
We are interested in the possibility of applying the method of conceptual problem-
solving. Under this term we understand such a procedure, in which the solver is not
limited to the automatic application of the definition of the absolute value, but he
can reject some cases based on his mathematical knowledge. To do this, one must
make use from various features of this concept — not only from its definition.

1. Introduction

In the paper [1], we included remarks on solving several types of equations
containing terms with the absolute value. There we paid attention on the
conceptual problem-solving, i.e. the procedure of solving based on the use of
theorems which involve the absolute value. We also set this method against the
algorithmic method of solving, i.e. the procedure which bases on mechanical
use of absolute value definition and considering cases deriving from the range
of formulas’ applicability.

In the current paper, we present some examples of problems which are
generated by the discussion of existence of solutions to the following equation:

[f (@) + g(z)| = m, (1)

where f : D1 — R, g : Dy — R and Dy N Dy # () and m is an arbitrary
real number. We are interested in the possibility of applying the conceptual
problem-solving method in reference to equations of this type.

Issues listed below may provide a basis for building mathematical tasks
and problems which, thanks to the use of conceptual problem-solving method,
allow us to intense creative mathematical activity.
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2. Exemplary issues

First, let us notice that equation (1) has a solution only if m belongs to the
set of values of the function x — |f(x)| 4 |g(z)|. However, indication of this
set sometimes is importunate. The form of equation (1) ensues the following
prerequisite for existence of solution to this equation:

Theorem 1. Let f : D; — R and g : Dy — R with Dy N Dy # 0 be given
functions and let m be an arbitrary real number. If equation (1) has a solution,
then m is a nonnegative number.

Non-negativity of the number m is not the sufficient condition for existence
of the solution to equation (1). This is evidenced by the following example.

Example 1. Let us consider the equation
|22 — 4] + |3z| = m.

The analysis of the graph of the function v — |x* — 4| + |3z| for x € R
demonstrates that the values of the function are obviously nonnegative. We can
also notice that the discussed equation does not have solutions for 0 < m < 4.

Y
f(@)=|a?—4|+|32]
1
1 x
Figure 1.

To find the sufficient conditions for existence of a solution we start with
the proof of the following lemma.

Lemma 1. Let f : Dy = R, g: Dy — R and Dy N Dy # (). Let A and B
designate the following sets:

A={x e DiNDy: f(x)g(x) >0}, B={xe€DiNDy: f(xr)g(x) <0}
Therefore,

[f(@) +g(@), =€ A,
g

max(|f () + g(2)|,[f(x) = g(2)]) :{ f(z) — g(z)|, =€B.
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Proof. Let x € A. Then |f(z) + g(x)| = f(x) + g(z), when f(z) and g(z)
are nonnegative, or |f(z) 4+ g(x)| = —f(z) — g(z), when f(z) and g(x) are

negative, and If() ()| = f(z) — g(z), when f(z) > g(z) or
|f(z) — g(z)] = —f(z) + g(z), when f(z) < ?(x) Hence, it follows that

max(|f(z) + g(x )I [f(z) = g(x)]) = [f(x) + g(z)
For x € B we have
[ f@) +e). @ e Band f@) + gla) >0,
|f(z) 4+ g(x)| = { —f(z) —g(x), x€ Band f(z)+ g(z) <0,

—

and

@) =gy = T@ 9@, weBand f(@) - g@) 20,
—f(z)+g(x), =€ Band f(x)—g(x) <O0.

Therefore, it ensues that max(|f(x) + g(x)|,|f(z) — g(z)|| = |f(z) — g(z)],
which ends the proof.

In posterior deliberations we will make use of the known feature of the
absolute value of real number.

Lemma 2. For arbitrary real numbers p, q the following equation is satisfied

Pl + lg| = max(|p + ql, [p — ).
The following theorem is true.

Theorem 2. Let f : D1 — R, g: Dy — R and D1NDy # 0 be given functions
and let m be an arbitrary nonnegative real number. Equation (1) has a solution
if and only if there exists the number xo € Dy N Dy such that the following
conditions hold

|f(z0) + g(zo)| =m and |f(z0) — g(xo)| = m,

|f(z0) + g(zo)| =m and |f(z0) — g(xo)| <m,

[F(w0) + g(zo)| <m and |f(zo) — g(xo)| = m

Proof. If equation (1) has a solution, then there exists the number
xg € D1 N Dy such that

|f(zo)| + |g(wo)| = m
It follows herefrom and from lemma 2 that

max(|f(zo) + g(zo)l,|f(z0) — g(x0)|) = m, (2)

and, in consequence, conditions contained in the thesis of the led theorem.
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Let us presume that there exists xg € D N Do which satisfies disjunction
of conditions from the led theorem. Thus, equation (2) holds and on account
of lemma 2 we receive that x( is the solution of equation (1).

In the quoted paper [1], we consider equation (1) in which functions f and
g satisfy the condition

EICER\V/JEEDIQDQLJC(‘T) - g(CC)| =G

and the function |f(z) + g(x)| is boundless from the top in its domain. The
below theorem is the generalization of theorem 5 from the mentioned paper.

Theorem 3. Let f : D1 — R, g : Dy — R and D1 N Dy # () be given
functions, hi(x) = |f(x) + g(z)|, ha(z) = |f(x) — g(x)|, x € Dy N Dy and let
m be an arbitrary nonnegative real number.

a) If
Jeer+Vaeninpo|f(2) — g(2)[ = ¢ (3)

and m € hi(Dy N Dy), hence equation (1) has a solution if and only if

c < m. (4)

b) If
3eer+Vaeninp,| f(2) + g(2)] = ¢ (5)

and m € ho(Dy1 N Dy), hence equation (1) has a solution if and only if
the inequality (4) holds.

Proof.

a) Let us assume that equation (1) has the solution xzy € Dy N Dy. Then,
by lemma 2 and condition (3), we have

max (| f(zo) + g(zo)|,c) = m,

hence inequality (4) holds. Let us assume that inequality (4) holds.
From (1), lemmas 2 and (3) we have

| (@)| + |g(z)| = max(|f(z) + g(z)|, c) = m.

Hence, from (4) we receive the inequality |f(x) + g(x)| < m. The fact
that m € hq(D1 N D2) shows that there exists the number xg € D1 N Dy
which satisfies equation (1).

b) The proof of this part of the theorem is carried out in analogical fashion.
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Assuming (3) or (5), it follows from theorem 3 that equation (1) can be
replaced by the equation

|f(x) —g(@)|=m or |f(x)+g(x)] =m.

Let us consider the following example.

Example 2.

2)

b)

The equation |az+b|+|az+c| = m, where a, b, ¢, and m are given real numbers,
has a solution on the strength of theorem 3a) if and only if |b — ¢| < m. Thus,
it can be replaced by the equation |2az + b+ ¢| = m (compare [1]).

The equation | — 22| + | — 22 + 2| = m has a solution on the strength of
theorem 3b) if and only if m > 2. Thus, it can be replaced by the equation
| — 222 — 2| = m.

Theorem 3 does not determinate the number of solutions of equation 1. For
example, the equation |sinz| 4 |sinx 4+ 2| = m has infinitely many solutions
for m = 2 (see Figure 2).

f(x)=|sinz|+|sin 42|

(SIE]
8

Figure 2.

In Figure 2, the graph of the function f(z) = |sinz|+ |sinz + 2| is presented.

The condition for existence of solution to the considered equation cannot be
described by means of theorem 3, because the absolute values of the sum and
the difference of the functions are not boundless. Simultaneously, this equation
can be replaced by the equation |2sin(z) + 2| = m if m € [2,4].

At the end we will solve the problem of existence of solutions to equation
(1) with additional assumption.

Theorem 4. Let f : D1 — R, g: Dy — R and D1NDy # 0 be given functions
and let m and k be arbitrary positive real numbers. Equation (1) has a solution
which satisfies the condition

F2(a) + g (x) = k* (6)

if and only if m € [k, kv/2].
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Proof. From (6) and (1) we obtain the equation

[f (@) + VE> = f2(z) = m,

assuming that |f(z)| < k. Hence we get the equation
2f%(x) — 2m|f(x)| +m? — k* = 0,

which has a solution for m < kv/2. Moreover, if we square equation (1) and
take into account condition (6), then we obtain that m > k, which ends the
proof of the theorem.

Let us notice that if f(z) = sinz and g(x) = cosz, then k = 1. The
following conclusion is derived from theorem 4.

Conclusion 1. The equation
|sinx| 4+ |cosz| =m
has a solutions if and only if m € [1,V/2].

From conslusion 1 it follows that the set [1,1/2] is the set of values of the
function  — |sin x| + | cos z|. This fact may explain the frequent appearance
of the following task in many of the tasks collections:

Solve the equation
|sin? x| + | cos? z| = V2.

3. Summary

Issues presented in this paper and some similar issues were considered at class
with students of Mathematics Teaching Faculty. Observations of students’
work and researches carried out in other groups (see [1]) indicate that there
occur great difficulties of learners in formulation of hypotheses, including the
necessary conditions and sufficient conditions for relevant facts. Surveyed
students have considered equations mainly by putting particular values into
formulas. This type of attitude can be explained by some mathematical im-
maturity of students in the field of general mathematical reasonings.
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