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Abstrat. In this paper, we give the proposition of didati disussion on the

existene of solutions of some equations ontaining expressions with absolute value.

We are interested in the possibility of applying the method of oneptual problem-

solving. Under this term we understand suh a proedure, in whih the solver is not

limited to the automati appliation of the de�nition of the absolute value, but he

an rejet some ases based on his mathematial knowledge. To do this, one must

make use from various features of this onept � not only from its de�nition.

1. Introdution

In the paper [1℄, we inluded remarks on solving several types of equations

ontaining terms with the absolute value. There we paid attention on the

oneptual problem-solving, i.e. the proedure of solving based on the use of

theorems whih involve the absolute value. We also set this method against the

algorithmi method of solving, i.e. the proedure whih bases on mehanial

use of absolute value de�nition and onsidering ases deriving from the range

of formulas' appliability.

In the urrent paper, we present some examples of problems whih are

generated by the disussion of existene of solutions to the following equation:

|f(x)| + |g(x)| = m, (1)

where f : D1 → R, g : D2 → R and D1 ∩ D2 �= ∅ and m is an arbitrary

real number. We are interested in the possibility of applying the oneptual

problem-solving method in referene to equations of this type.

Issues listed below may provide a basis for building mathematial tasks

and problems whih, thanks to the use of oneptual problem-solving method,

allow us to intense reative mathematial ativity.
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2. Exemplary issues

First, let us notie that equation (1) has a solution only if m belongs to the

set of values of the funtion x → |f(x)| + |g(x)|. However, indiation of this

set sometimes is importunate. The form of equation (1) ensues the following

prerequisite for existene of solution to this equation:

Theorem 1. Let f : D1 → R and g : D2 → R with D1 ∩ D2 �= ∅ be given

funtions and let m be an arbitrary real number. If equation (1) has a solution,

then m is a nonnegative number.

Non-negativity of the number m is not the su�ient ondition for existene

of the solution to equation (1). This is evidened by the following example.

Example 1. Let us onsider the equation

|x2 − 4| + |3x| = m.

The analysis of the graph of the funtion x → |x2 − 4| + |3x| for x ∈ R

demonstrates that the values of the funtion are obviously nonnegative. We an

also notie that the disussed equation does not have solutions for 0 ≤ m < 4.
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f(x)=|x2−4|+|3x|
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Figure 1.

To �nd the su�ient onditions for existene of a solution we start with

the proof of the following lemma.

Lemma 1. Let f : D1 → R, g : D2 → R and D1 ∩ D2 �= ∅. Let A and B

designate the following sets:

A = {x ∈ D1 ∩ D2 : f(x)g(x) ≥ 0}, B = {x ∈ D1 ∩ D2 : f(x)g(x) < 0}.

Therefore,

max(|f(x) + g(x)|, |f(x) − g(x)|) =

{

|f(x) + g(x)|, x ∈ A,

|f(x) − g(x)|, x ∈ B.
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Proof. Let x ∈ A. Then |f(x) + g(x)| = f(x) + g(x), when f(x) and g(x)
are nonnegative, or |f(x) + g(x)| = −f(x) − g(x), when f(x) and g(x) are

negative, and |f(x) − g(x)| = f(x) − g(x), when f(x) ≥ g(x) or

|f(x) − g(x)| = −f(x) + g(x), when f(x) < g(x). Hene, it follows that

max(|f(x) + g(x)|, |f(x) − g(x)|) = |f(x) + g(x)|.
For x ∈ B we have

|f(x) + g(x)| =

{

f(x) + g(x), x ∈ B and f(x) + g(x) ≥ 0,

−f(x)− g(x), x ∈ B and f(x) + g(x) < 0,

and

|f(x) − g(x)| =

{

f(x) − g(x), x ∈ B and f(x) − g(x) ≥ 0,

−f(x) + g(x), x ∈ B and f(x) − g(x) < 0.

Therefore, it ensues that max(|f(x) + g(x)|, |f(x) − g(x)|| = |f(x) − g(x)|,
whih ends the proof.

In posterior deliberations we will make use of the known feature of the

absolute value of real number.

Lemma 2. For arbitrary real numbers p, q the following equation is satis�ed

|p| + |q| = max(|p + q|, |p − q|).

The following theorem is true.

Theorem 2. Let f : D1 → R, g : D2 → R and D1∩D2 �= ∅ be given funtions

and let m be an arbitrary nonnegative real number. Equation (1) has a solution

if and only if there exists the number x0 ∈ D1 ∩ D2 suh that the following

onditions hold

|f(x0) + g(x0)| = m and |f(x0) − g(x0)| = m,
or

|f(x0) + g(x0)| = m and |f(x0) − g(x0)| < m,
or

|f(x0) + g(x0)| < m and |f(x0) − g(x0)| = m.

Proof. If equation (1) has a solution, then there exists the number

x0 ∈ D1 ∩ D2 suh that

|f(x0)| + |g(x0)| = m.

It follows herefrom and from lemma 2 that

max(|f(x0) + g(x0)|, |f(x0) − g(x0)|) = m, (2)

and, in onsequene, onditions ontained in the thesis of the led theorem.
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Let us presume that there exists x0 ∈ D1 ∩ D2 whih satis�es disjuntion

of onditions from the led theorem. Thus, equation (2) holds and on aount

of lemma 2 we reeive that x0 is the solution of equation (1).

In the quoted paper [1℄, we onsider equation (1) in whih funtions f and

g satisfy the ondition

∃ c∈R∀x∈D1∩D2
|f(x) − g(x)| = c,

and the funtion |f(x) + g(x)| is boundless from the top in its domain. The

below theorem is the generalization of theorem 5 from the mentioned paper.

Theorem 3. Let f : D1 → R, g : D2 → R and D1 ∩ D2 �= ∅ be given

funtions, h1(x) = |f(x) + g(x)|, h2(x) = |f(x) − g(x)|, x ∈ D1 ∩ D2 and let

m be an arbitrary nonnegative real number.

a) If
∃ c∈R+∀x∈D1∩D2

|f(x) − g(x)| = c (3)

and m ∈ h1(D1 ∩ D2), hene equation (1) has a solution if and only if

c ≤ m. (4)

b) If
∃ c∈R+∀x∈D1∩D2

|f(x) + g(x)| = c (5)

and m ∈ h2(D1 ∩ D2), hene equation (1) has a solution if and only if

the inequality (4) holds.

Proof.

a) Let us assume that equation (1) has the solution x0 ∈ D1 ∩ D2. Then,

by lemma 2 and ondition (3), we have

max(|f(x0) + g(x0)|, c) = m,

hene inequality (4) holds. Let us assume that inequality (4) holds.

From (1), lemmas 2 and (3) we have

|f(x)| + |g(x)| = max(|f(x) + g(x)|, c) = m.

Hene, from (4) we reeive the inequality |f(x) + g(x)| ≤ m. The fat

that m ∈ h1(D1 ∩D2) shows that there exists the number x0 ∈ D1 ∩D2

whih satis�es equation (1).

b) The proof of this part of the theorem is arried out in analogial fashion.
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Assuming (3) or (5), it follows from theorem 3 that equation (1) an be

replaed by the equation

|f(x) − g(x)| = m or |f(x) + g(x)| = m.

Let us onsider the following example.

Example 2.

a) The equation |ax+b|+|ax+c| = m, where a, b, c, and m are given real numbers,

has a solution on the strength of theorem 3a) if and only if |b − c| ≤ m. Thus,

it an be replaed by the equation |2ax + b + c| = m (ompare [1℄).

b) The equation | − x2| + | − x2 + 2| = m has a solution on the strength of

theorem 3b) if and only if m ≥ 2. Thus, it an be replaed by the equation

| − 2x2 − 2| = m.

) Theorem 3 does not determinate the number of solutions of equation 1. For

example, the equation | sinx| + | sin x + 2| = m has in�nitely many solutions

for m = 2 (see Figure 2).
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f(x)=| sin x|+| sin x+2|
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Figure 2.

In Figure 2, the graph of the funtion f(x) = | sin x|+ | sin x + 2| is presented.

The ondition for existene of solution to the onsidered equation annot be

desribed by means of theorem 3, beause the absolute values of the sum and

the di�erene of the funtions are not boundless. Simultaneously, this equation

an be replaed by the equation |2 sin(x) + 2| = m if m ∈ [2, 4].

At the end we will solve the problem of existene of solutions to equation

(1) with additional assumption.

Theorem 4. Let f : D1 → R, g : D2 → R and D1∩D2 �= ∅ be given funtions

and let m and k be arbitrary positive real numbers. Equation (1) has a solution

whih satis�es the ondition

f2(x) + g2(x) = k2 (6)

if and only if m ∈ [k, k
√

2].
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Proof. From (6) and (1) we obtain the equation

|f(x)| +
√

k2 − f2(x) = m,

assuming that |f(x)| ≤ k. Hene we get the equation

2f2(x) − 2m|f(x)| + m2 − k2 = 0,

whih has a solution for m ≤ k
√

2. Moreover, if we square equation (1) and

take into aount ondition (6), then we obtain that m ≥ k, whih ends the

proof of the theorem.

Let us notie that if f(x) = sin x and g(x) = cos x, then k = 1. The

following onlusion is derived from theorem 4.

Conlusion 1. The equation

| sin x| + | cos x| = m

has a solutions if and only if m ∈ [1,
√

2].

From onslusion 1 it follows that the set [1,
√

2] is the set of values of the

funtion x → | sin x|+ | cos x|. This fat may explain the frequent appearane

of the following task in many of the tasks olletions:

Solve the equation

| sin2 x| + | cos2 x| =
√

2.

3. Summary

Issues presented in this paper and some similar issues were onsidered at lass

with students of Mathematis Teahing Faulty. Observations of students'

work and researhes arried out in other groups (see [1℄) indiate that there

our great di�ulties of learners in formulation of hypotheses, inluding the

neessary onditions and su�ient onditions for relevant fats. Surveyed

students have onsidered equations mainly by putting partiular values into

formulas. This type of attitude an be explained by some mathematial im-

maturity of students in the �eld of general mathematial reasonings.
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