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Abstra
t. In this paper, we give the proposition of dida
ti
 dis
ussion on the

existen
e of solutions of some equations 
ontaining expressions with absolute value.

We are interested in the possibility of applying the method of 
on
eptual problem-

solving. Under this term we understand su
h a pro
edure, in whi
h the solver is not

limited to the automati
 appli
ation of the de�nition of the absolute value, but he


an reje
t some 
ases based on his mathemati
al knowledge. To do this, one must

make use from various features of this 
on
ept � not only from its de�nition.

1. Introdu
tion

In the paper [1℄, we in
luded remarks on solving several types of equations


ontaining terms with the absolute value. There we paid attention on the


on
eptual problem-solving, i.e. the pro
edure of solving based on the use of

theorems whi
h involve the absolute value. We also set this method against the

algorithmi
 method of solving, i.e. the pro
edure whi
h bases on me
hani
al

use of absolute value de�nition and 
onsidering 
ases deriving from the range

of formulas' appli
ability.

In the 
urrent paper, we present some examples of problems whi
h are

generated by the dis
ussion of existen
e of solutions to the following equation:

|f(x)| + |g(x)| = m, (1)

where f : D1 → R, g : D2 → R and D1 ∩ D2 �= ∅ and m is an arbitrary

real number. We are interested in the possibility of applying the 
on
eptual

problem-solving method in referen
e to equations of this type.

Issues listed below may provide a basis for building mathemati
al tasks

and problems whi
h, thanks to the use of 
on
eptual problem-solving method,

allow us to intense 
reative mathemati
al a
tivity.
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2. Exemplary issues

First, let us noti
e that equation (1) has a solution only if m belongs to the

set of values of the fun
tion x → |f(x)| + |g(x)|. However, indi
ation of this

set sometimes is importunate. The form of equation (1) ensues the following

prerequisite for existen
e of solution to this equation:

Theorem 1. Let f : D1 → R and g : D2 → R with D1 ∩ D2 �= ∅ be given

fun
tions and let m be an arbitrary real number. If equation (1) has a solution,

then m is a nonnegative number.

Non-negativity of the number m is not the su�
ient 
ondition for existen
e

of the solution to equation (1). This is eviden
ed by the following example.

Example 1. Let us 
onsider the equation

|x2 − 4| + |3x| = m.

The analysis of the graph of the fun
tion x → |x2 − 4| + |3x| for x ∈ R

demonstrates that the values of the fun
tion are obviously nonnegative. We 
an

also noti
e that the dis
ussed equation does not have solutions for 0 ≤ m < 4.

x

y

f(x)=|x2−4|+|3x|

1

1

Figure 1.

To �nd the su�
ient 
onditions for existen
e of a solution we start with

the proof of the following lemma.

Lemma 1. Let f : D1 → R, g : D2 → R and D1 ∩ D2 �= ∅. Let A and B

designate the following sets:

A = {x ∈ D1 ∩ D2 : f(x)g(x) ≥ 0}, B = {x ∈ D1 ∩ D2 : f(x)g(x) < 0}.

Therefore,

max(|f(x) + g(x)|, |f(x) − g(x)|) =

{

|f(x) + g(x)|, x ∈ A,

|f(x) − g(x)|, x ∈ B.
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Proof. Let x ∈ A. Then |f(x) + g(x)| = f(x) + g(x), when f(x) and g(x)
are nonnegative, or |f(x) + g(x)| = −f(x) − g(x), when f(x) and g(x) are

negative, and |f(x) − g(x)| = f(x) − g(x), when f(x) ≥ g(x) or

|f(x) − g(x)| = −f(x) + g(x), when f(x) < g(x). Hen
e, it follows that

max(|f(x) + g(x)|, |f(x) − g(x)|) = |f(x) + g(x)|.
For x ∈ B we have

|f(x) + g(x)| =

{

f(x) + g(x), x ∈ B and f(x) + g(x) ≥ 0,

−f(x)− g(x), x ∈ B and f(x) + g(x) < 0,

and

|f(x) − g(x)| =

{

f(x) − g(x), x ∈ B and f(x) − g(x) ≥ 0,

−f(x) + g(x), x ∈ B and f(x) − g(x) < 0.

Therefore, it ensues that max(|f(x) + g(x)|, |f(x) − g(x)|| = |f(x) − g(x)|,
whi
h ends the proof.

In posterior deliberations we will make use of the known feature of the

absolute value of real number.

Lemma 2. For arbitrary real numbers p, q the following equation is satis�ed

|p| + |q| = max(|p + q|, |p − q|).

The following theorem is true.

Theorem 2. Let f : D1 → R, g : D2 → R and D1∩D2 �= ∅ be given fun
tions

and let m be an arbitrary nonnegative real number. Equation (1) has a solution

if and only if there exists the number x0 ∈ D1 ∩ D2 su
h that the following


onditions hold

|f(x0) + g(x0)| = m and |f(x0) − g(x0)| = m,
or

|f(x0) + g(x0)| = m and |f(x0) − g(x0)| < m,
or

|f(x0) + g(x0)| < m and |f(x0) − g(x0)| = m.

Proof. If equation (1) has a solution, then there exists the number

x0 ∈ D1 ∩ D2 su
h that

|f(x0)| + |g(x0)| = m.

It follows herefrom and from lemma 2 that

max(|f(x0) + g(x0)|, |f(x0) − g(x0)|) = m, (2)

and, in 
onsequen
e, 
onditions 
ontained in the thesis of the led theorem.



252 Joanna Major, Zbigniew Pow¡zka

Let us presume that there exists x0 ∈ D1 ∩ D2 whi
h satis�es disjun
tion

of 
onditions from the led theorem. Thus, equation (2) holds and on a

ount

of lemma 2 we re
eive that x0 is the solution of equation (1).

In the quoted paper [1℄, we 
onsider equation (1) in whi
h fun
tions f and

g satisfy the 
ondition

∃ c∈R∀x∈D1∩D2
|f(x) − g(x)| = c,

and the fun
tion |f(x) + g(x)| is boundless from the top in its domain. The

below theorem is the generalization of theorem 5 from the mentioned paper.

Theorem 3. Let f : D1 → R, g : D2 → R and D1 ∩ D2 �= ∅ be given

fun
tions, h1(x) = |f(x) + g(x)|, h2(x) = |f(x) − g(x)|, x ∈ D1 ∩ D2 and let

m be an arbitrary nonnegative real number.

a) If
∃ c∈R+∀x∈D1∩D2

|f(x) − g(x)| = c (3)

and m ∈ h1(D1 ∩ D2), hen
e equation (1) has a solution if and only if

c ≤ m. (4)

b) If
∃ c∈R+∀x∈D1∩D2

|f(x) + g(x)| = c (5)

and m ∈ h2(D1 ∩ D2), hen
e equation (1) has a solution if and only if

the inequality (4) holds.

Proof.

a) Let us assume that equation (1) has the solution x0 ∈ D1 ∩ D2. Then,

by lemma 2 and 
ondition (3), we have

max(|f(x0) + g(x0)|, c) = m,

hen
e inequality (4) holds. Let us assume that inequality (4) holds.

From (1), lemmas 2 and (3) we have

|f(x)| + |g(x)| = max(|f(x) + g(x)|, c) = m.

Hen
e, from (4) we re
eive the inequality |f(x) + g(x)| ≤ m. The fa
t

that m ∈ h1(D1 ∩D2) shows that there exists the number x0 ∈ D1 ∩D2

whi
h satis�es equation (1).

b) The proof of this part of the theorem is 
arried out in analogi
al fashion.
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Assuming (3) or (5), it follows from theorem 3 that equation (1) 
an be

repla
ed by the equation

|f(x) − g(x)| = m or |f(x) + g(x)| = m.

Let us 
onsider the following example.

Example 2.

a) The equation |ax+b|+|ax+c| = m, where a, b, c, and m are given real numbers,

has a solution on the strength of theorem 3a) if and only if |b − c| ≤ m. Thus,

it 
an be repla
ed by the equation |2ax + b + c| = m (
ompare [1℄).

b) The equation | − x2| + | − x2 + 2| = m has a solution on the strength of

theorem 3b) if and only if m ≥ 2. Thus, it 
an be repla
ed by the equation

| − 2x2 − 2| = m.


) Theorem 3 does not determinate the number of solutions of equation 1. For

example, the equation | sinx| + | sin x + 2| = m has in�nitely many solutions

for m = 2 (see Figure 2).

x

y

f(x)=| sin x|+| sin x+2|

π
2

1

Figure 2.

In Figure 2, the graph of the fun
tion f(x) = | sin x|+ | sin x + 2| is presented.

The 
ondition for existen
e of solution to the 
onsidered equation 
annot be

des
ribed by means of theorem 3, be
ause the absolute values of the sum and

the di�eren
e of the fun
tions are not boundless. Simultaneously, this equation


an be repla
ed by the equation |2 sin(x) + 2| = m if m ∈ [2, 4].

At the end we will solve the problem of existen
e of solutions to equation

(1) with additional assumption.

Theorem 4. Let f : D1 → R, g : D2 → R and D1∩D2 �= ∅ be given fun
tions

and let m and k be arbitrary positive real numbers. Equation (1) has a solution

whi
h satis�es the 
ondition

f2(x) + g2(x) = k2 (6)

if and only if m ∈ [k, k
√

2].
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Proof. From (6) and (1) we obtain the equation

|f(x)| +
√

k2 − f2(x) = m,

assuming that |f(x)| ≤ k. Hen
e we get the equation

2f2(x) − 2m|f(x)| + m2 − k2 = 0,

whi
h has a solution for m ≤ k
√

2. Moreover, if we square equation (1) and

take into a

ount 
ondition (6), then we obtain that m ≥ k, whi
h ends the

proof of the theorem.

Let us noti
e that if f(x) = sin x and g(x) = cos x, then k = 1. The

following 
on
lusion is derived from theorem 4.

Con
lusion 1. The equation

| sin x| + | cos x| = m

has a solutions if and only if m ∈ [1,
√

2].

From 
onslusion 1 it follows that the set [1,
√

2] is the set of values of the

fun
tion x → | sin x|+ | cos x|. This fa
t may explain the frequent appearan
e

of the following task in many of the tasks 
olle
tions:

Solve the equation

| sin2 x| + | cos2 x| =
√

2.

3. Summary

Issues presented in this paper and some similar issues were 
onsidered at 
lass

with students of Mathemati
s Tea
hing Fa
ulty. Observations of students'

work and resear
hes 
arried out in other groups (see [1℄) indi
ate that there

o

ur great di�
ulties of learners in formulation of hypotheses, in
luding the

ne
essary 
onditions and su�
ient 
onditions for relevant fa
ts. Surveyed

students have 
onsidered equations mainly by putting parti
ular values into

formulas. This type of attitude 
an be explained by some mathemati
al im-

maturity of students in the �eld of general mathemati
al reasonings.
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