PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Photonic-Crystal Selective Filter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A highly selective filter is designed, working at 1.55 μm and having a 3-dB bandwidth narrower than 0.4 nm, as is required in Dense Wavelength Division Multiplexed systems. Different solutions are proposed, involving photonic crystals made rectangular- or circular-section dielectric rods, or else of holes drilled in a dielectric bulk. The polarization and frequency selective properties are achieved by introducing a defect in the periodic structure. The device is studied by using in-house codes implementing the full-wave Fourier Modal Method. Practical guidelines about advantages and limits of the investigated solutions are given.
Rocznik
Tom
Strony
107--112
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
  • Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
autor
  • Roma Tre University, Via Vito Volterra 60-62, 00146 Rome, Italy
Bibliografia
  • [1] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light. Princeton: Princeton Univ. Press, 2008.
  • [2] K. Yasumoto, Ed., Electromagnetic Theory and Applications for Photonic Crystals, New York: CRC Press, Taylor & Francis, 2005.
  • [3] E. Ozbay, B. Temelkuran, and M. Bayindir, “Microwave applications of photonic crystals”, Progress in Electromag. Res., vol. 41, pp. 185–209, 2003.
  • [4] H.-H. Xie, Y.-C. Jiao, K. Song, and Z. Zhang, “A novel multi-band electromagnetic band-gap structure”, Progress in Electromag. Res. Lett., vol. 9, pp. 67–74, 2009.
  • [5] F. Yang and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering. New York: Cambridge University Press, 2009.
  • [6] H. Li and X. Yang, “Larger absolute band gaps in two-dimensional photonic crystals fabricated by a three-order-effect method”, Progress in Electromagn. Res., vol. 108, pp. 385–400, 2010.
  • [7] F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, and G. Schettini, “Design and fabrication of a 3D-EBG superstrate for patch antennas”, in Proc. 39th Eur. Microwave Conf. EuMC 2009, Rome, Italy, 2009, pp. 1496–1499.
  • [8] F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, and G. Schettini, “Analysis and experimental characterization of an alumina woodpilecovered planar antenna”, in Proc. 40th Eur. Microwave Conf. EuMC 2010, Paris, France, 2010, pp. 200–203.
  • [9] V. Jandieri, K. Yasumoto, and Y.-K. Cho, “Rigorous analysis of electromagnetic scattering by cylindrical EBG structures”, Progress in Electromag. Res., vol. 121, pp. 317–342, 2011.
  • [10] J.-Y. Chen, E. Li, and L.-W. Chen, “Optical absorption enhancement in solar cells via 3D photonic crystal structures”, Progress in Electromag. Res. M, vol. 17, pp. 1–11, 2011.
  • [11] F. Guller, M. E. Inchaussandague, and R. A. Depine, “Dispersion relation and band gaps of 3D photonic crystals made of spheres”, Progress in Electromag. Res. M, vol. 19, pp. 1–12, 2011.
  • [12] D. M. Nashaat Elsheakh, H. A. Elsadek, E. A.-F. Abdallah, H. M. ElHenawy, and M. F. Iskander, “Ultra-wide bandwidth microstrip monopole antenna by using electromagnetic band-gap structures”, Progress in Electromag. Res. Lett., vol. 23, pp. 109–118, 2011.
  • [13] F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, and G. Schettini, “Advances in EBG-resonator antenna research”, Proc. Int. Symp. on Antennas and Propag. ISAP 2012, Nagoya, Japan, 2012, pp. 1301–1304.
  • [14] S. Ceccuzzi, L. Pajewski, C. Ponti, and G. Schettini, “Directive propagation in two EBG structures: a comparison”, in IEEE MTT-S Int. Microwave Symp. Digest IMS 2013, Seattle, WA, USA, 2013, pp. 1–4 (doi: 0.1109/MWSYM.2013.6697579).
  • [15] S. Ceccuzzi, L. Pajewski, C. Ponti, and G. Schettini, “Comparison between two methods for directivity enhancement of antennas through 2-D EBGs”, in Proc. 34th Progress in Electromag. Res. Symp. PIERS 2013, Stockholm, Sweden, 2013, pp. 557–561.
  • [16] F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, and G. Schettini, “Radiation-enhancement properties of an X-band woodpile EBG and its application to a planar antenna”, Int. J. on Antenn. and Propag., vol. 2014, article ID 729187, pp. 1–15, 2014 (doi: 10.1155/2014/72918).
  • [17] S. Ceccuzzi, L. Pajewski, C. Ponti, and G. Schettini, “Directive EBG antennas: a comparison between two different radiating mechanisms”, IEEE Trans. on Antenn. and Propag., vol. 62, no. 10, pp. 5420–5424, 2014 (doi: 10.1109/TAP.2014.2346174).
  • [18] A. O. Silva, R. Bertholdo, M. G. Schiavetto, B.-H. V. Borges, S. J. L. Ribeiro, Y. Messaddeq, and M. A. Romero, “Comparative analysis between experimental characterization results and numerical FDTD modeling of self-assembled photonic crystals”, Progress in Electromag. Res. B, vol. 23, pp. 329–342, 2010.
  • [19] V. A. Tolmachev, V. Baldycheva, K. Berwick, and T. S. Perova, “Influence of fluctuations of the geometrical parameters on the photonic band gaps in one-dimensional photonic crystals”, Progress in Electromag. Res., vol. 126, pp. 285–302, 2012.
  • [20] H.-T. Hsu, M.-H. Lee, T.-J. Yang, Y.-C. Wang, and C.-J. Wu, “A multichanneled filter in a photonic crystal containing coupled defects”, Progress in Electromag. Res., vol. 117, pp. 379–392, 2011.
  • [21] H. Butt, Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, “Photonic crystals and metamaterial filters based on 2D arrays of silicon nanopillars”, Progress in Electromag. Res., vol. 113, pp. 179–194, 2011.
  • [22] C.-J. Wu and Z.-H. Wang, “Properties of defect modes in onedimensional photonic crystals”, Progress in Electromag. Res., vol. 103, pp. 169–184, 2010.
  • [23] A. Gharaati and H. Azarshab, “Characterization of defect modes in one-dimensional ternary metallo-dielectric nanolayered photonic crystal”, Progress in Electromag. Res. B, vol. 37, pp. 125–141, 2012.
  • [24] K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber”, Progress in Electromag. Res. M, vol. 22, pp. 179–189, 2012.
  • [25] F. Frezza, L. Pajewski, and G. Schettini, “Periodic defects in 2D-PBG materials: full-wave analysis and design”, IEEE Trans. on Nanotechnol., vol. 2, no. 3, pp. 126–134, 2003.
  • [26] F. Frezza, L. Pajewski, and G. Schettini, “Numerical investigation on the filtering behavior of 2D-PBGs with multiple periodic defects”, IEEE Trans. on Nanotechnol., vol. 4, no. 6, pp. 730–739, 2005.
  • [27] F. Frezza, L. Pajewski, and G. Schettini, “Characterization and design of two-dimensional electromagnetic band-gap structures by use of a full-wave method for diffraction gratings”, IEEE Trans. on Microw. Theory and Techniq., vol. 51, no. 3, pp. 941–951, 2003.
  • [28] L. Pajewski, R. Borghi, G. Schettini, F. Frezza, and M. Santarsiero, “Design of a binary grating with subwavelength features that acts as a polarizing beam splitter”, Applied Optics, vol. 40, no. 32, pp. 5898–5905, 2001.
  • [29] R. Borghi, F. Frezza, L. Pajewski, M. Santarsiero, and G. Schettini, “Full-wave analysis of the optimum triplicator”, J. of Electromag. Waves and Appl., vol. 15, no. 6, pp. 689–708, 2001.
  • [30] R. Borghi, F. Frezza, L. Pajewski, M. Santarsiero, and G. Schettini, “Optimum even-phase four-beam multiplier”, Optical Engin., vol. 41, no. 11, pp. 2736–2742, 2002.
  • [31] F. Frezza, L. Pajewski, and G. Schettini, “Fast and accurate modeling of finite-thickness 2D-EBG structures made by circularsection rods”, Microw. and Optical Technol. Lett., vol. 39, no. 6, pp. 433–437, 2003.
  • [32] F. Frezza, L. Pajewski, and G. Schettini, “Fractal two-dimensional electromagnetic band-gap structures”, IEEE Trans. on Microw. Theory and Techniq., vol. 52, no. 1, pp. 220–227, 2004.
  • [33] F. Frezza, L. Pajewski, and G. Schettini, “Full-wave characterization of three-dimensional photonic bandgap structures”, IEEE Trans. on Nanotechnol., vol. 5, no. 5, pp. 545–553, 2006.
  • [34] M. Veysi and M. Shafaee, “EBG frequency response tuning using an adjustable air-gap”, Progress in Electromag. Res. Lett., vol. 19, pp. 31–39, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-412203ae-5c46-484f-9b93-e83c8bafaf88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.