Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article explores the significant role played by Poland in the EU-SENSE project, a landmark initiative under the Horizon 2020 framework, focusing on the advancement of Chemical, Biological, Radiological, and Nuclear (CBRN) security. Emphasising Poland’s leadership and strategic coordination, the article examines the project’s impact on enhancing national CBRN capabilities, integrating new technologies into Poland’s security framework, and fostering international collaboration. The study highlights the advancements in sensor technology, reduction of false positives in threat detection, and the development of a comprehensive response mechanism to CBRN threats. Furthermore, it delves into the implications of these advancements for Poland’s role in the global CBRN security context, illustrating how the project not only improved Poland’s national security capabilities but also established the country as a contributor to global CBRN defence efforts. The article concludes by discussing the future directions in CBRN security, emphasising the ongoing opportunities for technological innovation and strategic planning within Poland’s national security system.
Wydawca
Rocznik
Tom
Strony
175--193
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
Bibliografia
- [1] Barras, V., Greub, G., (2014). History of biological warfare and bioterrorism. Clinical Microbiology and Infection, 20, 6, 497–502.
- [2] Benolli, F., Guidotti, M., Bisogni, F., (2021). The CBRN Threat. Perspective of an Interagency Response. In: Jacobs, G., Suojanen, I., Horton, K., Bayerl, P. (eds), International Security Management. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-42523-4_29
- [3] Bonfanti, M.E., & Capone, F., (2015). Fostering a comprehensive security approach: an exploratory case study of cbrn crisis management frameworks in eleven european countries. Information & Security, 33(1).
- [4] Brennan, R.J., Waeckerle, J.F., (1999). Chemical Warfare Agents: Emergency Medical and Emergency Public Health Issues. Annals of Emergency Medicine, 34, 2, 191–204.
- [5] Brent, J. et al., (2017). Critical Care Toxicology: Diagnosis and Management of the Critically Poisoned Patient. Springer International Publishing.
- [6] Broughton, E., (2005). The Bhopal disaster and its aftermath: a review. Environmental Health, 4, 6.
- [7] Carbonelli, M., Iannotti, A., Malizia, A., (2022). Disaster Management of a Major CBRN Accident. In: Masys, A.J. (eds), Handbook of Security Science. Springer, Cham. https://doi.org/10.1007/978-3-319-91875-4_36
- [8] Chilcott, R.P., (2014). Managing mass casualties and decontamination. Environment International, 72, 37–45.
- [9] Davidson, C.E., Dixon, M.M., Williams, B.R. et al., (2020). Detection of Chemical Warfare Agents by Colorimetric Sensor Arrays. ACS Sens., 5, 4, 1102–1109.
- [10] French-Lujan, J.A., Harrington, T., Fizer, R., Diggs, D., (2024). CBRN Defense Readiness Reporting. Joint Force Quarterly, 115, 21–25, https://digitalcommons.ndu.edu/joint-force-quarterly/vol115/iss3/5
- [11] Gawlik-Kobylińska, M., Gudzbeler, G., Szklarski, Ł., Kopp, N., Koch-Eschweiler, H., & Urban, M., (2021). The EU-SENSE System for Chemical Hazards Detection, Identification, and Monitoring. Applied Sciences, 11(21), 10308. https://doi.org/10.3390/app112110308
- [12] Gawlik-Kobylińska, M., Urban, M., Gudzbeler, G., (2025). The EU-SENSE System as a Tool to Support Airport Security. In: Kabashkin, I., Yatskiv, I., Prentkovskis, O. (eds.), Reliability and Statistics in Transportation and Communication: Human Sustainability and Resilience in the Digital Age. RelStat 2024. Lecture Notes in Networks and Systems, vol. 1337. Springer, Cham. https://doi.org/10.1007/978-3-031-87532-8_53
- [13] Gromek, P., Szklarski, Ł. (2023). Modern technologies in enhancing situational awareness and preparedness for CBRN events in urban areas. Perspective of European Commission call in 2022. Journal of Modern Science, 53(4), 362–390. https://doi.org/10.13166/jms/176678
- [14] Haywood, P.T., Karalliedde, L., (2016). Management of poisoning due to organophosphorus compounds. Current Anaesthesia & Critical Care, 11, 6, 331–337.
- [15] Kozioł, J., Gikiewicz, M., Gromek P., et al., (2021). EU-SENSE detection system in mass gathering evacuation. Zeszyty Naukowe SGSP, 80(1), 175–197. https://doi.org/10.5604/01.3001.0015.6484
- [16] Levy, B.S., & Bissell, R.A., (2013). Terrorism and Public Health: A Balanced Approach to Strengthening Systems and Protecting People. Oxford University Press.
- [17] Mlsna, T.E., Cemalovic, S., (2006). Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection. Sensors and Actuators B: Chemical, 116, 1–2, 28, 192–201.
- [18] NATO Advanced Research Workshop on Defence Against Weapons of Mass Destruction Terrorism, (2009). Defence Against Weapons of Mass Destruction Terrorism. IOS Press.
- [19] Okumura, T. et al., (1998). The Tokyo Subway Sarin Attack: Disaster Management, Part 1: Community Emergency Response. Academic Emergency Medicine, 5, Issue 6, 557–653.
- [20] Oudejans, L, O’Kelly, J., (2016). Decontamination of personal protective equipment and related materials contaminated with toxic industrial chemicals and chemical warfare agent surrogates. Journal of Environmental Chemical Engineering, 4, 3, 2745–2753.
- [21] Richardt, A., Blum, M.-M., (2008). Decontamination of Warfare Agents: Enzymatic Methods for the Removal of B/C Weapons. Wiley‐VCH Verlag GmbH & Co. KGaA.
- [22] Smith, W.J., (2007). Advances in military textiles and personal equipment. Woodhead Publishing.
- [23] Sparks, E., (2012). Advances in Military Textiles and Personal Equipment. Elsevier.
- [24] Szklarski, Ł., (2025). Zagrożenia CBRN. Warsaw: Difin.
- [25] Szklarski, Ł., (2024). Poland’s strategic potential and capabilities to respond to CBRN threats. Journal of Modern Science, 56(2), 437–464. https://doi.org/10.13166/jms/188731
- [26] Szklarski, Ł., (2023). CBRN threats to Ukraine during the Russian aggression: mitigating gamma radiation hazards-innovative countermeasures and decontamination strategies in the context of potential destruction of the Zaporizhzhia nuclear power plant. Zeszyty Naukowe SGSP, 87, 143–164. https://doi.org/10.5604/01.3001.0053.9115
- [27] Szklarski, Ł., (2021). Diagnoza potrzeb w zakresie usprawnienia technologii i sprzętu służącego reagowaniu na incydenty o charakterze CBRN. Zarys problemu z perspektywy europejskich straży pożarnych. Zeszyty Naukowe SGSP, 80(2), 142–160. https://doi.org/10.5604/01.3001.0015.6474
- [28] Szklarski, Ł. Maik, P., Walczyk, W., (2020). Developing a novel network of CBRNe sensors in response to existing capability gaps in current technologies. Proc. SPIE 11416, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXI, 114160Y (24 April 2020). https://doi.org/10.1117/12.2558044
- [29] Xiaoqing Y., Pute W., (2013). A survey on wireless sensor network infrastructure for agriculture. Computer Standards & Interfaces, 35, 1, pp. 59–64.
- [30] Vollmer, M., Berchtold, C., Sakkas, G., Tsaloukidis, I., Kazantzidou-Firtinidou, D., Woitsch, P., & Perilä, J., (2024). Standardization Gaps in European Disaster Management. Journal of Homeland Security and Emergency Management, 21(2), 209–242.
- [31] Webber, M.E. et al. (2005). Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation. Journal of Applied Physics, 97, 113101.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4117e19f-751e-413a-86bb-b8008f880bc0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.