PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FTIR fingerprint — testing a new representation of the binary fingerprint based on FTIR spectra in the prediction of physicochemical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the development of a new method for the generation of binary fingerprints based on the Savitzky-Golay (SG) algorithm and first-order derivatives of FTIR spectra, which are then used to create prediction models for selected the physicochemical properties of chemical compounds. Models based on the FEDS (Functionally- Enhanced Derivative Spectroscopy) transformation and raw spectra were used as a reference to determine whether the use of the SG filter and first-order derivatives was worth to further develop. The FTIR spectra of 103 compounds with theoretically determined values of logP, logD and logS were studied. The Tanimoto coefficient and correlation coefficient were used to compare the fingerprints obtained, while the root mean square error (RMSE) was used to assess the quality of the prediction models. Based on the results, it was found that the use of the SG filter and derivatives had a positive effect on the quality of the prediction models for logP and logS, and a negative effect on the quality of the models for logD, compared to the models based on original spectra and FEDS transformation.
Rocznik
Strony
9--29
Opis fizyczny
Bbliogr. 20 poz., wykr.
Twórcy
  • University of Applied Sciences in Tarnow, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Mickiewicza 8, 33-100 Tarnów, Poland
  • Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
Bibliografia
  • [1] Terstappen GC, Reggiani A. In silico research in drug discovery. Trends in Pharmacological Sciences. 2001;22(1):23–26. HTTPS://DOI.ORG/10.1016/ S0165-6147(00)01584-4.
  • [2] Willett P, Barnard JM, Downs GM. Chemical similarity searching. Journal of Chemical Information and Computer Sciences. 1998;38(6):983–996, 1998, https://doi. org/10.1021/ci9800211.
  • [3] Bajorath J. Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening. Journal of Chemical Information and Computer Sciences. 2001;41(2):233–245. https://doi. org/10.1021/ci0001482.
  • [4] Wigh DS, Goodman JM, Lapkin AA. A review of molecular representation in the age of machine learning. WIREs: Computional Molecular Science. 2022;12(5):1–19. https:// doi.org/10.1002/wcms.1603.
  • [5] Zagidullin B, Wang Z, Guan Y, Pitkänen E, Tang J. Comparative analysis of molecular fingerprints in prediction of drug combination effects. Briefings in Bioinformatics. 2021;22(6):1–15. https://doi.org/10.1093/bib/bbab291.
  • [6] Ball DW. Field Guide to Spectroscopy [Internet]. Bellingham: SPIE Press; 2006. [cited 2022 June 21]. Available form: https://spie.org/Publications/Book/682726.
  • [7] Luo J, Ying K, Bai J. Savitzky-Golay smoothing and differentiation filter for even number data. Signal Processing. 2005;85(7):1429–1434. https://doi.org/10.1016/j. sigpro.2005.02.002.
  • [8] Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry. 1964;36(8):1639–1643. https://doi.org/10.1021/ ac60214a048.
  • [9] Riordon ANJ, Zubritsky E. Top 10 articles. Analytical Chemistry. [Internet] 2000 [cited 2022 June 21]. Available form: http://pubs.acs.org/ac.
  • [10] Schafer RW. What is a Savitzky-Golay filter? [Lecture notes]. IEEE Signal Processing Magazine. 2011;28(4):111– 117. https://doi.org/10.1109/MSP.2011.941097.
  • [11] Cygański A. Metody spektroskopowe w chemii analitycznej. Warszawa: Wydawnictwo WNT; 2017.
  • [12] de Aragão BJG, Messaddeq Y. Peak separation by derivative spectroscopy applied to FTIR analysis of hydrolized silica. Journal of the Brazilian Chemical Society. 2008;19(8):1582–1594. https://doi.org/10.1590/ S0103-50532008000800019.
  • [13] Palencia M. Functional transformation of Fourier-transform mid-infrared spectrum for improving spectral specificity by simple algorithm based on wavelet-like functions. Journal of Advanced Research. 2018;14:53–62. Htttps://doi.org/10.1016/J.JARE.2018.05.009.
  • [14] Rieppo L, Saarakkala S, Närhi T, Helminen HJ, Jurvelin JS, Rieppo J. Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthritis and Cartilage. 2012;20(5):451–459. https://doi. org/10.1016/J.JOCA.2012.01.010.
  • [15] Yukihiro O, Slobodan Š, Jiang JH. How can we unravel complicated near infrared spectra? Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region. Journal of Near Infrared Spectroscopy. 2001;9(2). https:// doi.org/10.1255/jnirs.2.
  • [16] Otálora A, Palencia M. Application of functionally-enhanced derivative spectroscopy (FEDS) to the problem of the overlap of spectral signals in binary mixtures: Triethylamine- acetone. Journal of Science with Technological Applications. 2019;6:96–107. https://doi.org/10.34294/J. JSTA.19.6.44.
  • [17] Golonka D. Development of a new chemical compound representation based on FTIR spectrum for prediction of physicochemical properties of potential therapeutic substances [master thesis]. Kraków: Jagiellonian University; 2021.
  • [18] Kurczab R, Golonka D. A new approach to encoding the chemical structure based on the FTIR spectra of compound. In: Xth Conversatory on Medicinal Chemistry in Lublin; 2021. https://doi.org/10.13140/RG.2.2.18264.01284.
  • [19] Gorzynski Smith J. Chapter 13: Mass spectrometry and infrared spectroscopy. In: Organic Chemistry. 3rd ed. New York: McGraw-Hill; 2011. p. 463–488.
  • [20] Kennepohl D, Farmer S, Reusch W. 11.5: Infrared Spectra of Some Common Functional Groups. In: LibreTexts: Chemistry [Internet]. [cited 2023, March 11]. Available from: https://chem.libretexts.org/Bookshelves/ Organic_Chemistry/Map%3A_Organic_Chemistry_( Wade)_Complete_and_Semesters_I_and_II/ Map%3A_Organic_Chemistry_(Wade)/11%3A_Infrared_ Spectroscopy_and_Mass_Spectrometry/11.05%3A_Infrared_ Spectra_of_Some_Common_Functional_Groups.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41178066-f6c4-43b3-a737-ce4063a2dc1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.