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Abstract 

Constraint Programming (CP) is an emergent software technology for 
declarative description and effective solving of large combinatorial problems 
especially in the area of integrated production planning. In that context, CP can 
be considered as an appropriate framework for development of decision making 
software supporting scheduling of multi-robot in a multi-product flow shop. The 
paper deals with multi-resource problem in which more than one shared 
renewable resource type may be required by manufacturing operation and the 
availability of each type is time-windows limited. The problem belongs to a class 
of NP-complete ones. The aim of the paper is to present a knowledge based and 
CLP-driven approach to multi-robot task allocation framework providing a 
prompt service to a set of routine queries stated both in straight and reverse way. 
Provided example concentrates on the first case taking into account both an 
accurate and an uncertain specification of robots operation time.. 

  
  
1. INTRODUCTION 
  

Some industrial processes simultaneously produce different products using the same 
production resources. For example in recycling industries, different items are recovered 
simultaneously from the recycled products. The common characteristic in these industries is that 
items are produced simultaneously with specified, or variable, productions. The distribution of 
the cumulative demand for each item is known order over a finite planning horizon and all 
unsatisfied demand is fully backlogged  [15].  

An optimal assignment of available resources to production steps in a multi-product job shop 
is often economically indispensable. The goal is to generate a plan/schedule of production orders 
for a given period of time while minimizing the cost that is equivalent to maximization of profit. 

In that context executives want to know how much a particular production order will cost, 
what resources are needed, what resources allocation can guarantee due time production order 
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completion, and so on [2]. So, a dispatcher’s needs might be formulated in a form of standard, 
routine questions, such as: Does the production order can be completed before an arbitrary given 
deadline? What is the production completion time following assumed robots operation time? Is it 
possible to undertake a new production order under given (constrained in time) resources 
availability while guaranteeing disturbance-free execution of the already executed orders? What 
values and of what variables guarantee the production order will completed following assumed 
set of performance indexes?  

Because the most companies have to manage various production orders which share a pool of 
constrained resources and taking into account various objectives at the same time the above stated 
questions can be reformulated in the multi-product job shop context, i.e., the job shop producing 
simultaneously different kind of items. From that point of view the problems standing behind of 
the quoted questions belong to the class of so called project scheduling ones. In turn, project 
scheduling can be defined as the process of allocating scarce resources to activities over a period 
of time to perform a set of activities in a way taking into account a given performance measure. 
Such problems belong to NP-complete ones. Therefore, the new methods and techniques 
addressing the impact of real-life constraints on the decision making is of great importance, 
especially for interactive and task oriented DSSs designing [3].  

Several techniques have been proposed in the past fifty years, including Mixed Integer Linear 
Programming [9], Branch-and-Bound [5] or more recently Artificial Intelligence. The last sort of 
techniques concentrate mostly on fuzzy set theory and constraint programming frameworks. 
Constraint Programming/Constraint Logic Programming (CP/CLP) languages [4], [15] seems to 
be well suited for modeling of real-life and day-to-day decision-making processes in an enterprise 
[2]. 

 In turn, applications of fuzzy set theory in production management [16] shows that most of 
the research on project scheduling has been focused on fuzzy PERT and fuzzy CPM. The most 
popular solutions came from the formalism of fuzzy sets numbers [7], and are then implemented 
in fuzzy CPM, and fuzzy PERT [8]. 

In this context, the contribution covers various issues of decision making while employing the 
knowledge and CP based framework. The proposed approach provides the framework allowing 
one to take into account both: distinct (pointed), and imprecise (fuzzy) data, in a unified way and 
treated in a unified form of discrete constraint satisfaction problem (CSP) [3]. The approach 
proposed concerns of the logic-algebraic method based and CP-driven methodology aimed at 
interactive decision making based on distinct and imprecise data. The paper can be seen as 
continuation of our former works concerning projects portfolio prototyping [2], [6] and CP-based 
approach to the project-driven manufacturing.  

We first provide an illustrative example of the problem considered, see the Section 2, and then 
we present some details of the modeling framework assumed, in particular we describe the 
reference model employed, see the Section 3. In the Section 4, the problem statement is provided, 
and then its CSP implementation is provided, see  the Section 5. The logic-algebraic based 
approach to CSP resolution is discussed in the Section 6, and then an illustrative example of the 
possible application of the approach  developed is discussed, see the Section 7. We conclude with 
some results and lesson learned in the Section 8.  

 
2.   ILLUSTRATIVE EXAMPLE OF DECISION PROBLEM 
 

Consider the Job shop composed of 10 work stations where from the two semi-products K1, 
K2, two products W1 and W2 are manufactured following  the production route P1, see the Fig. 
1. On the work stations three kinds of manufacturing operations are considered: decomposition, 
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e.g. disassembly, {O1,2, O1,4} , composition, e.g. assembly {O1,5, O1,9, O1,10} and processing, 
e.g. milling {O1,1, O1,3, O1,6, O1,7, O1,8} . The work stations are serviced by three robots (ro1, ro2, 
ro3) and two workers (ro4, ro5).  Two robots and/or  workers can be allocated to each Oi,j, see 

the Table1. 

 
 

Fig. 1. Job shop  following the production route P1 

 
Given are operations times as well as associated moments of the relevant resources 

allocation. Such kind of decision variables, e.g. operation times executed by robots or workers, 
can be specified either as distinct or imprecise ones.   

 
Table 1.  Robots and workers allocation to production route P1 activities. 

 

  O1,1 O1,2 O1,3 O1,4 O1,5 O1,6 O1,7 O1,8 O1,9 O1,10 

ro1 1 0 1 0 0 0 0 1 0 0 

ro2 0 1 0 1 1 0 0 1 1 0 robots 

ro3 0 0 0 1 0 1 1 0 0 1 

ro4 1 0 0 0 1 1 0 0 1 0 
workers 

ro5 0 1 1 0 0 0 1 0 0 1 

 
Note that, since an amount of common shared resources is limited, hence their allocation to 

simultaneously executed activities  has to avoid an occurrence of closed loop resources request, 
i.e. the deadlocks.  Also, an imprecise nature of decision variables implies an imprecise (fuzzy) 
character of the performance evaluating criteria employed, e.g., an imprecise value of 
completion time concerning products W1 and W2. Moreover, because the constraints linking 
imprecise variables are also imprecise the relevant membership function grades, assumed to be 
involved in decision making, should be taken into account.  

In that context, the problem of multi-robot task allocation in a multi-product job shop 
reduces to a class of the dispatcher’s routine questions, such as: Does a given way of resources 
allocation guarantee the production orders completion time do not exceed the deadline H? 
Does there exist a way of resources allocation such that production orders completion time not 
exceeding the deadline H is guaranteed?  
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3. REFERENCE MODEL  
 

Let us consider  the reference model of a decision problem concerning of multi-robot task 
allocation in a multi-product job shop assuming imprecise character of decision variables. The 
model specifies both the job shop capability and production orders requirement in an unified 
way, i.e., through the description of determining them sets of variables and sets of constraints 
restricting domains of discrete variables. Some conditions concerning the routine questions are 
included in the set of constraints. That means in case such conditions hold the response to 
associated questions is positive. Of course, in order to avoid confusion the constraints 
guaranteeing the responses DO NOT KNOW  are not allowed are also taken into account. In 
that context, the reference model is aimed at routine questions such as: Does a given job shop 
capabilities and a given way of resources allocation guarantee the assumed makespan of 
production orders do not exceed the deadline H? 

Decision variables: Given amount lz of renewable discrete resources roi (for instance 
robots and workers) specified by the sequence Ro = (ro1, ro2, …, rolz), and the sequence of 
resources availability Zo = (zo1,zo2,…,zolz); zoi –the availability of the i-th resource, assumed to 
be constant within the discrete time horizon H, where: {0,1,…,h,…,H}, h ⊂ N. Given a set of 
production routes P = {P1,P2,...,Plp}. Each the i-th route Pi is specified by the set composed of 
loi activities, i.e., Pi = {Oi,1,Oi,2,Oi,3,…,Oi,loi}, where:   

 
Oi,j = (xi,j, ti,j, Tpi,j, Tzi,j, Dpi,j),    (1) 

 
xi,j  – means the starting time of the activity Oi,j, i.e., the time counted from the beginning of the 

time horizon H, 
tij – the duration of the Oi,j-th activity, 
Tpi,j = (tpi,j,1, tpi,j,2, ... , tpi,j,lz) – the sequence of time moments the activity Oi,j requires new 

amounts of renewable resources: tpi,j ,k – the time counted since the moment xi,j of the dpi,j ,k 
amount of the k-th resource allocation to the activity Oi,j. That means a resource is allotted 
to an activity during its execution period: 0 ≤ tpi,j,k< tij; k = 1,…,lz.  

Tzi,j = (tzi,j,1, tzi,j,2, ... , tzi,j,lz) – the sequence of moments the activity  Oi,j releases the subsequent 
resources: tzi,j,k  – the time counted since the moment xi,j the dpi,j ,k amount of the k-th 
renewable resource was released by the activity Oi,j.. That is assumed a resource is released 
by activity during its execution: 0 < tzi,j ,k≤ tij; k = 1,2,…,lz, and tpi,j ,k <  tzi,j,k ;  k = 1, 2, …, 
lz.  

Dpi,j = (dpi,j,1, dpi,j,2,..., dpi,j,lz) – the sequence of the k-th resource amounts dpi,j,k  are allocated to 
the activity Oi,j, i.e., dpi,j,k  – the amount of the k-th resource allocated to the activity Oi,j. 
That assumes: 0 ≤  dpi,j,k  ≤  zok;  k = 1, 2, …, lz.    
Consequently, each activity Oi,j = (xi,j, tij, Tpi,j, Tzi,j, Dpi,j) is specified by the following 

sequences of: 
• starting times of activities in the route  Pi: 
 

  Xi = (xi,1, xi,2,…,
iloix , ),  0 ≤  xi,j<  h;  i = 1, 2,…, lp;  j = 1, 2,…, loi, 

 
• duration of activities in the route Pi: Ti=(ti,1,ti,2,…,

iloit , ),  

• starting times the j-th resource is allocated to the k-th activity in the route   Pi: 
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  TPi,j  = (tpi,1,j, ...,tpi,k,j,..., jloi i
tp ,, ),     

 
• starting times the j-th resource is released by the k-th activity in the Pi: 
 

  TZi,j= (tzi,1,j, tzi,2,j,... , jloi i
tz ,, ),     

 
• amounts of the j-th resources allotted to the k-th activity in the route  Pi: 
 

  DPi,j   = (dpi,1,j, dpi,2,j,… , jloi i
dp ,, ).  

 
Assume some of chosen execution times are defined precisely, however a few of them are 

known roughly i.e., are treated as fuzzy variables specified by fuzzy sets. In case of imprecise 

decision variables such as operation times ),...,,( ,,, iloiiii tttT
))))

21= where  jit ,
)

 denotes execution 

time of the operation Oi,j, and starting times of activities ),...,,( ,,, iloiiii xxxX
))))

21= , where jix ,
)

 

denotes starting time of activity Oi,j. Therefore, the activity Oi,j = ( , , Tpi,j, Tzi,j, Dpi,j) is 
specified by the following sequences of: 

• starting times of activities in the route  Pi: 
 

),...,,( ,,, iloiiii xxxX
))))

21= ,     (2) 

• duration of activities in the route Pi: 
 

),...,,( ,,, iloiiii tttT
))))

21= ,     (3) 

where:  iX
)

– is a fuzzy set determining the operation Oi,j starting time, 

iT
)

– is a fuzzy set specifying the operation time, 

Tpi,j, Tzi,j, Dpi,j – the sequences defined as in formulae  (1). 
 
Considered fuzzy variables are specified by fuzzy sets described by convex membership 

function [12]. Since, that distinct decision variables can be seen as a special case of imprecise 
ones, hence all the further considerations are focused on the imprecise (fuzzy) kind of 
variables.  

Activities order constraints: Let us consider a set of production routes Pi  composed of loi 
precedence and resource constrained, non-preemptable activities that require renewable 
resources. Assume lz renewable discrete resources are available and sequences r i = 
(ro1,ro2,…,rof), i = 1,…,loi, determines fixed discrete resource requirements of the i-th activity. 
The total number of units of the discrete resource j, j=1,…, lz, is limited by zoj. The resource 
can be allotted (and constant within activity operation time) to activities in arbitrary amount 
from the set {1,…,zoj}.  The resources allotted to the i-th activity have to be available at the 
moments Tpi,j, Tsi,j.  

The production routes Pi  are represented by activity-on-node networks, where activities 
state for nodes and arcs determine an order of activities execution. Consequently, the following 
activities order constraints are considered:   

• the k-th activity follows the i-th one :    
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kijiji xtx ,,,
))))) ≤+ ,       (4)  

 
• the k-th activity follows other activities:  
 

kinjinjikijijikijiji xtxxtxxtx ,,,,,,,,, ,...,,
))))))))))))))) ≤+≤+≤+ ++++ 11 ,   (5) 

 
• the k-th activity is followed by other activities:  
 

nkijijikijijikijiji xtxxtxxtx +++ ≤+≤+≤+ ,,,,,,,,, ,...,,
)))))))))))))))

21 ,  (6) 

 
The relevant fuzzy arithmetic operations +

)
, ≤
)

 are defined in the Appendix. Due to the 
formulas (8), (12), see the Appendix, any fuzzy constraint Ci (e.g. li vv

))) < ) can be characterized 

by the logic value E(Ci), E(Ci)∈[0,1]. In turn, values E(Ci) allow to determine the level of  
uncertainty DE of reference model’s constraints satisfaction, i.e. a kind of uncertainty 
threshold. For instance, DE = 1 means the all constraints hold, and DE = 0,8 means that they 
are almost satisfied. The level DE is defined due to the formulae  (7): 

cloi
iCEDE

,...,,
)}(min{

21=
= ,            (7) 

where: loc – a number of reference model constraints. 
Resource conflict constraints: In order to avoid deadlocks the constraints providing 

conflicts resolution, i.e., avoiding the occurrence of closed loop resources request, are 
considered. The constraints guarantee the sum of  allocated amounts of a given resource do not 
exceed its current availability zoi,j, at any moment within the assumed time horizon {0,1,…,H}. 
So, for each the k-th resource the following inequalities hold (8) at any time g ∈ {0,1,…,H}, 

 

[ ] kkjijikjiji

lp

i

lo

j
kji zotzxtpxgdp

i

≤++⋅∑∑
= =

),,(1 ,,,,,,,,
1 1

,   (8) 

 
where: lp – a number of projects, loi – a number of activities contained by the i-th project,  

dpi,j,k – an amount of the k-th resource allocated by Oi,j, 
)1(- )1(  ),,(1 bgagbag −−=  – the unit step function of the resource allocation  where 

1(a) - is a unit step function.   
 
In case of fuzzy constraints design one has to take into account fuzzy variables Xi,j, Tpi,j Tzi,j 

as well as a fuzzy unit step function of the resource allocation (9): 

 ),,(1- ),,(1  ),,,(1 111
)))

)))))))))
)

EbgEagEbag = ,         (9) 

where: ba
))

, – fuzzy numbers  (in the case variables are precisea
)

and b
)

are singletons. 
Consider the following  fuzzy unit step function of the resource allocation (10): 
 

)(

)(
   ),,(1

agE

agEE
Eag ))

))
))

) )

)

≥−
≥−

−=
21

1 1
1

         (10) 
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where: [0,1] {0,1},),,(1 ∈∈ 11
))

))
)

EEag  – means the fuzzy logic value.  

Due to constraints following (8), the sum of requested resources is calculated only at 
moments corresponding to the ones xi,j + tpi,j, when resources are allocated to subsequent 
activities.  Therefore, an amount of available resources may change within the time horizon H. 
So, in order to avoid the number of allocated resources exceeds the amount of available 
resources (similarly to (8)) the constraints (11) are introduced.    
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)
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)
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for k = 1,2, …, lz,  
where: lz – a number of renewable resources  

qjiE ,,,1
) – uncertainty threshold of the  i,j –th fuzzy unit step function of the resource 

allocation.  
Due to (7) the logic value E(Coq) of the particular constraint Coq from the set (11) is 

calculated as follows (12):  

{ }
iloj
qjilpi

EDE
,...,,

,,,,...,,
}min{ min

21
121

=
=

= )          (12) 

where: lp – a number of production routes, loi – activities number in the i-th production route.  
Note that in the course of decision making supported by constraints defined on fuzzy 

variables the relevant uncertainty thresholds (e.g. following an operation’s experience) should 
be assumed. That means, in order to guarantee an intuitive interpretation of decision making 
the manager should be able to decide about the membership functions of the decision variables 
used as well as uncertainty thresholds of fuzzy constraints employed. 

 
4.   PROBLEM STATEMENT 

 
The introduced model provides the formal framework enabling one to state the problem 

considered. Given the time horizon {0,…,H} , the set of production orders (specified by the set 
of production routes) P, the set of resources and their availabilities Zo within {0,…,H}. Given 

are distinct and imprecise decision variables treated as fuzzy numbers, i.e. the sequencesiT
)

,  

jiji ZTPT ,, ,
))

. The following questions should be answered:  
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Does a given resources allocation guarantee the production orders makespan do not exceed 
the deadline H? Response to this question results in determination of the sequences: 

lpXXX
)))

,...,, 21 . 

Does there exists such resources allocation guaranteeing the production orders makespan do 
not exceed the deadline H? Response to this question results in determination of the sequences: 

lpXXX
)))

,...,, 21 . 

The following remarks should be stated:  
• the problems considered are formulated in terms of the reference model proposed,  
• the questions stated above correspond to the straight and reverse problems of multi-

product scheduling. 
 

5. CONSTRAINT SATISFACTION PROBLEM 
 

Constraint programming (CP) is an emergent software technology for declarative 
description and effective solving of large combinatorial problems, especially in the areas of 
integrated production planning. Since a constraint can be treated as a logical relation among 
several variables, each one taking a value in a given (usually discrete) domain, the idea of CP 
is to solve problems by stating the requirements (constraints) that specify a problem at hand, 
and then finding a solution satisfying all the constraints [4]. Because of its declarative nature, 
it is particularly useful for applications where it is enough to state what has to be solved 
instead how to solve it [4]. More formally, CP is a framework for solving combinatorial 
problems specified by pairs: <a set of variables and associated domains, a set of 
constraints restricting the possible combinations of the values of the variables>. So, the 
constraint satisfaction problem (CSP) [4] is defined as follows: 

 
   CS = ((A, D), C)               (13) 

 
where: A = {a1, a2,...,ag} – a finite set of discrete decision variables,  

D = {Di | Di = {di,1, di,2, ..., di,,j, ..., di,,ld}, i = 1,...,g} – a family of finite variable domains 
and the finite set of constraints  

 C = {Ci | i = 1,…,L} – a finite set of constraints limiting the variables domain.  
The solution to the CS is a vector (d1,i, d2,k, …, dn,j) such that the entry assignments satisfy 

all the constraints C. So, the task is to find the values of variables satisfying all the constraints, 
i.e., a feasible valuation.  

The inference engine consists of the following two components: constraint propagation and 
variable distribution. Constraints propagation uses constraints actively to prune the search 
space. The aim of propagation techniques, i.e., local consistency checking, is to reach a certain 
level of consistency in order to accelerate search procedures by drastically reducing the size of 
the search tree [3].  The constraints propagation executes almost immediately. What limits the 
size of the problem in practical terms is the variable distribution phase, which employs the 
backtracking-based search and is very time consuming as a result.  

The declarative character of CP languages and their high efficiency in solving 
combinatorial problems offer an attractive alternative to the currently available DSSs that 
employ operation research techniques. 
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6. KNOWLEDGE BASE 
 

Logic-algebraic method (LAM) [6] based inference engine in the CP environment permits 
to obtain a solution more efficiently, either in terms of the solution time or the scale of the 
problem. The idea behind the introduction of the LAM formalism consists in the assumption 
that response of the type DO NOT KNOW is not allowed.  

It is assumed that the knowledge base KB describing a system (e.g. an enterprise) is 
presented in the form of the sets U, W, Y, that define the domains of some system properties u, 
y, w (at the qualitative level). The variables u describing the input properties of the system are 
called the input variables, the variables y  describing the output properties of the system are 
called the output variables, and the variables w are called the auxiliary variables. The 
knowledge specifying the properties of the system under consideration is described in the form 
of the set of facts F(u,w,y). The facts F(u,w,y) are propositions encompassing, the relationships 
(i.e., constraints) occurring between individual variables u,w,y. 

The decision problem can be then formulated in the following way. Given are sets of input 
variables U={ u1,u2,…,un}, output variables Y={ y1,y2,…,ym}, auxiliary variables 
W={ w1,w2,…,wk}, with the variables ui, yj, and wi defined in domains Dui, Dyi, Dwi, and sets of 
constraints (properties) F(U), F(Y) linking the variables from different sets. The decision 
problem consists in finding such a relation R ⊂ U×Y×W for which the input property F(U) 
implies the satisfaction of the condition F(U) ⇒ F(Y). The solution can be easily found based 
on the LAM theory [6]: 
 

Ru = Su1 \ Su2        (14) 
Su1 = {( U): w(F(U,Y,W))  = 1, w(F(Y)) = 1}    (15) 
Su2 = {( U): w(F(U,Y,W))  = 1, w(F(Y)) = 0}    (16) 

where:  

( )




=
holds  if

holds  if
(.)

F(.)

F(.)
Fw

0

1
 

The set Su1 consists of those elements of U for which all facts of sets F(U,Y,W), F(Y) hold. 
The set Su2, in turn, consists of those elements of U values for which all facts of the set 
F(U,Y,W) hold true, and at least one fact from the set F(Y) does not hold true. Ru=∅ denotes 
the lack of answer to the question asked. 

Consequently, the CSP considered results in the following form:  
 

CS = ((U,Y,W), D), {w(F(U,Y,W)) = 1})    (17) 
 
where: D = {DU, DY } - DU  is a set of input variables values U, DY  is a set of the output 

variable values Y,  
w(F(U,Y,W)) = 1 notes a set of facts {w(F1(U,Y,W))=1,...,w(FK(U,Y,W)) = 1}. 

Solving the decision problem (i.e., determination of the relation R) - in the context of CSP 
formalism - requires solving the following two problems: 

 
CSSu1=((U,Y,W),D),{w(F(U,Y,W))=1,w(F(Y))=1})    (18) 
CSSu2=((U,Y,W),D),{w(F(U,Y,W))=1,w(F(Y))=0})   (19) 

 
Set R = Su1 \ Su2 , where sets Su1 , Su2  are the solutions to the above problems, includes a 

group of alternative solutions for which the implication F(U) ⇒ F(Y)  holds. The inference 
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engine applied in the LAM is easily implementable in commercially available constraint logic 
programming languages, such as Oz/Mozart [13], Ilog [11]. 

 
7.   ILLUSTRATIVE EXAMPLE 
 

For illustration of the reference model based approach proposed let us consider the 
production route P1 composed of 10 activities (see Fig.1). Two products are manufactured 
simultaneously: W1 and W2 respectively. The operation times are treated as fuzzy variables and 

determined  by z-cuts: ),...,,( ,,, 10121111 tttT
))))

=   

11,t
)

={{[1,3],[2,3],[3,3]},{0;0,5;1}} (see Fig. 1 in the Appendix) 

21,t
)

={{[2,6],[2,5],[1,1] },{0;0,5;1}}, 31,t
)

={{[5,5],[5,5],[5,5]},{0;0,5;1}}, 

41,t
)

={{[3,5],[3,4],[3,3]},{0;0,5;1}}, 51,t
)

={{[2,4],[3,4],[4,4]},{0;0,5;1}}, 

61,t
)

={{[2,4],[2,3],[2,2] },{0;0,5;1}}, 71,t
)

={{[1,5],[2,4],[2,2]},{0;0,5;1}}, 

91,t
)

={{[2,2],[2,2],[2,2]},{0;0,5;1}}, 101,t
)

={{[2,4],[3,4],[4,4]},{0;0,5;1}}. 

 
Five different renewable resources ro1, ro2, ro3, ro4, ro5 are used. The resources’ allocation 

follows the Table 1. Therefore: 

DP1,1 = (1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0),  DP1,2 = (0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0), 
DP1,3 = (0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1),  DP1,4  = (1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0), 
DP1,5 = (0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1). 

That is assumed the moments of resources’ allocation and release follow the moments of 
operation’s beginning and completion. Therefore TP1,1 = TP1,2 = TP1,3 = TP1,4 =  
TP1,5=  (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Assumed are the following sequences: 

15141312111 TZTZTZTZTZT
))))))

===== ,,,,,  as well as Zo = (zo1, zo2, zo3, zo4, zo5) such that  zo1 

= zo2 = zo3 =  zo4 = zo5=1. Given the discrete time horizon H = [0, 20], H ⊂ N, and the 
uncertainty threshold DE ≥ 0,8.  

The question considered: Does there exists  a production schedule makespan of which do 

not exceeds a given deadline H? concerns of ),...,,( ,,, 10121111 xxxX
))))

= assuming the moments 

 are fuzzy numbers with triangle membership function. 
The activities order (4), (5), (6) and resource conflict (11) constraints have been 

implemented in OzMozart [13].  

First sufficient solution ),...,,( ,,, 10121111 xxxX
))))

=  (see Fig. 2) was obtained within three 

minutes (AMD Athlon(tm)XP 2500 + 1.85 GHz, RAM 1,00 GB):   
 

11,x
)

={{[0,0],[0,0],[0,0]},{0;0,5;1}}, 21,x
)

={{[0,0],[0,0],[0,0]},{0;0,5;1}} 

31,x
)

={{[2,4],[3,4],[4,4]},{0;0,5;1}}, 41,x
)

 ={{[2,4],[3,4],[4,4]},{0;0,5;1}} 

51,x
)

={{[7,9],[8,9],[9,9]},{0;0,5;1}}, 61,x
)

={{[5,7],[6,7],[7,7]},{0;0,5;1}} 

71,x
)

={{[7,9],[8,9],[9,9]},{0;0,5;1}}, 91,x
)

={{[12,14],[12,13],[12,12]},{0;0,5;1}}, 

81,x
)

={{[11,13],[11,12],[11,11] },{0;0,5;1}}, 

101,x
)

={{[13,15],[14,15],[15,15] },{0;0,5;1}}. 



 28 

Requirements following intuitive decision making imply the transformation of the fuzzy 
schedule obtained (see Fig.2) into the crispy-like one, e.g. providing results with the grade ≥ 
0.5 (see Fig.3).That means, assuming the uncertainty threshold value DE ≥ 0,8, the completion 
time of product W2 does not exceed 15 units of time, and 19 units of time in case of  product 
W1.   

 

 
 

Fig. 2. Fuzzy schedule for production route P1 
 

 
 

Fig. 3. Crispy-like at the grade 0.5 of membership function schedule for production route P1. 
 

8.  CONCLUDING REMARKS 
 

Proposed approach to multi-robot task allocation for multi-product job shop provides the 
framework allowing one to take into account both: straight and reverse problem statement. This 
advantage can be seen as a possibility to response (besides of standard questions: Is it possible 
to complete a given set of production orders at a scheduled project deadline?) to the questions 
like: What values and of what variables guarantee the production orders will completed due to 
assumed values of set of performance indexes? Provided example illustrates possibility of the 
straight implementation of the reference model in the constraint programming environment as 
well as capabilities of their usage in reverse problem solution.   
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Moreover the proposed approach provides the framework allowing one to take into account 
both: the sufficient conditions (guaranteeing the admissible solutions there exist) and choosing 
the best solution on the basis of chosen evaluation criteria. It can also be considered as a 
contribution to project-driven production flow management applied in make-to-order 
manufacturing as well as for prototyping of the virtual organization structures.  
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APPENDIX 
 

Imprecise variables specified by fuzzy sets and determined by convex membership function 
can be characterized by α - cuts [12], and then defined by pairs (a1): 

 
{ Ai, α}      (a1) 

 
where: },...,,{ ,,, lzzzzi iii

AAAA 21= finite set of so called z - cuts,  

αi,j = {αi,1, αi,2,…, αi,lz} – is a set αlzzz iii
AAA ,,, ,...,, 21 of values corresponding to α - cuts at 

levels αi,j, lz – a number of  z-cuts. And   
 

 kzi
A , =  [ai,k, bi,k]N      (a2) 

 
where:  ai,k, bi,k – is the smallest and the highest value of the k-th α - cut, ai,k, bi,k ∈N 
The z-cut can be seen as a discretized form of the α - cut, i.e. )(,, 0∪∩= NAA kkz ii α see 

Fig.3.  

 
 

Fig. 1 Fuzzy set iv
)

specified by: a) α - cuts, b) discretized α - cuts, i.e., z-cuts. 

 
Note, that under assumed specification the distinct values are represented by singletons.  

Imprecise character of decision variables, e.g., jix ,
)

, jit ,
)

, implies imprecise character of 

employing them constraints, which in turn can be considered as a consequence of 
implementation of assumed operations. Therefore, consider the set of fuzzy operations: „ =) ”, 
 “ <
)

”„ >
)

”,  encompassing standard algebraic operations such as: =, ≠, <, >, ≥, ≤. Of course, the 
considered fuzzy operations linking two fuzzy variables iv

)
, lv
)

 have to follow the condition 

(a3): 
1=>+=+< )()()( lilili vvEvvEvvE

)))))))))
    (a3) 

 
where:  E(a) – the fuzzy logic value of the proposition a, E(a) ∈ [0,1]. 
In order to define fuzzy operations used for description of the deadlock avoidance conditions 

(a10)  the following auxiliary sets ,L
iv  ,*

iv P
iv and   ,L

lv  ,*
lv P

lv   are defined as well as the 

concept of a size of fuzzy variable  the size of subsets ,L
iS ,P

iS ,L
lS ,P

lS ,*S of .iS  
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For each pair of fuzzy variables iv
)

, lv
)

 
defined by {(µi(v), v )},∀v ∈ Ki, where: Ki  is the 

domain of the variable iv
)

, the following sets can be distinguished: ,L
iv  ,*

iv P
iv and ,L

lv  
,*

lv P
lv . For instance, for the set   the following subsets can be determined: 

L
iv  –  the set composed of elements v being less (smaller) than all elements from lv

)
;  

*
, jiv –  the set of elements shared with lv

)
;  

P
lv  – the set composed of elements v being greater (bigger) than all elements from .  The 

sets ,L
iv  ,*

iv P
iv  are defined as follows:  

 
vi

L = {(µi
L(v), v )}, ∀v ∈ Ki,    (a4) 

 
where: 

 
minmin

min

or v   ),()(  if 

                    ),()(  if )()(
)(

wwvvv

wvvvvv
v

li

liliL
i ≥<≥

<≥



 −

=
µµ
µµµµ

µ
0

 

 wmin = min{Kw}, Kw={v:v∈ Ki, µl(v)=1}  

 vi
 * = {(µi

 *(v), v )}, ∀v ∈ Ki,            (a5) 
 

where: µi
 *(v) = min{µi(v), µl(v)  } 

vi
P = {(µi

P(v), v )},  ∀v ∈ Ki,           (a6) 

 
maxmax

max

or v   ),()(  if 

                    ),()(  if )()(
)(

wwvvv

wvvvvv
v

li

liliL
i ≥<≥

<≥



 −

=
µµ
µµµµ

µ
0

     

wmax = max{Kw}, Kw={v:v∈ Ki, µl(v)=1}     

Corresponding to the fuzzy variable iv
)

subsets  ,L
iv  ,*

iv P
iv are defined in the same way. 

To each fuzzy variable iv
)

, lv
)

 and the corresponding subset ,L
iv ,*

iv P
iv , ,L

lv  ,*
lv P

lv   

an associated size value can be determined. For instance, the size value iS  corresponding to 

the fuzzy variable iv
)

, and specified in terms of z-cuts can be defined as (a7): 

 

∑
=

=
lz

k
kzi i

AS
1

,  ,        (a7) 

where: kzi
A , – a number of elements of the set kzi

A , . 

In the similar way the size values ,lS ,L
iS ,*

lS ,P
iS ,L

lS ,*
iS ,P

iS  corresponding  to the 

sets ,L
iv ,*

iv P
iv , ,L

lv  ,*
lv P

lv  are  defined. 
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In the case considered because the decision variables iv
)

, lv
)

concern of the time domain 

the equation **
il SS = holds, for the given *

iv , *
lv . Therefore, for the sake of simplicity in 

further considerations the sizes ,*
lS  ,*

iS will be denoted by the same symbol .*S  

Given fuzzy variables iv
)

, lv
)

 
Consider algebraic-like fuzzy operations following the 

condition (a3). Fuzzy logic value of the proposition iv
) =) lv

)
is defined by (a8): 

li
li SS

S
vvE

+
==

*
)(

2)))
      (a8) 

where: Si – the size of iv
)

, Sl – the size of lv
)

 
*S – the size of the common part of sets iv

)
, lv
)

 

Fuzzy logic value of the proposition  iv
) <

)

lv
)

 is defined by (a9): 

 

li

P
l

L
i

li SS

SS
vvE

+
+

=< )(
)))

      (a9) 

where: Si – the size of iv
)

, Sl – the size of lv
)

, 
L

iS –  the size of ,L
iv −P

iS the size of P
iv ,   

Fuzzy logic value of the proposition  iv
) >

)

lv
)

is defined by (a10): 

 

li

L
l

P
i

li SS

SS
vvE

+
+

=> )(
)))

     (a10) 

 
Fuzzy logic value of the proposition iv

) ≥
)

lv
)

is defined by (a11): 

 

li

L
l

P
i

li SS

SSS
vvE

+
++

=≥
*

)(
2)))

     (a11) 

Fuzzy logic value of the proposition iv
) ≤

)

lv
)

 is defined by (a12): 

 

li

P
l

L
i

li SS

SSS
vvE

+
++

=≤
*

)(
2)))

     (a12) 

 
Formulaes (a8), (a9), (a10), (a11), (a12) allow one to design constraints describing basic 

relations among two fuzzy variables, such as equality, less than, greater than, less or equal, and 
greater or equal. In order to allow one to consider other constraints, e.g., taking into acount 
distinct variables, the fuzzy operations such as fuzzy addition and fuzzy subtraction have to be 
employed as well.  The relevant operations „ +

)
”, „ −) ” can be found in [6].       

 
 


