Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study represents the first culture-independent profiling of microbial diversity in post-processing wastewater from underground coal gasification (UCG) processes. Three types of post-processing wastewater, named W1, W2 and W3, were obtained from three UCG processes involving two types of coal and two gasification agents, namely oxygen-enriched air and oxygen. Very high concentrations of BTEX (benzene, toluene, ethylbenzene, xylene), polyaromatic hydrocarbons (PAHs), and phenol were detected in the wastewater, classifying it into the fifth toxicity class, indicating very high acute toxicity. The values for the Shannon (H), Ace and Chao1 indices in W2 were the lowest compared to their values in W1 and W3. The dominate phyla were Proteobacteria, contributing 84.64% and 77.92% in W1 and W3, respectively, while Firmicutes dominated in W2 with a contribution of 66.85%. At the class level, Gammaproteobacteria and Alphaproteobacteria were predominant in W1 and W3, while Bacilli and Actinobacteria were predominant in W2. Among Bacilli, the Paenibacillus and Bacillus genera were the most numerous. Our results suggest that the main differentiating factor of the bacterial structure and diversity in the wastewater could be the gasification agent. These findings provide new insights into the shifting patterns of dominant bacteria in post-processing wastewater and illustrate the spread of bacteria in industrial contaminated wastewater.
Czasopismo
Rocznik
Tom
Strony
32--41
Opis fizyczny
Bibliogr. 62 poz., tab., wykr.
Twórcy
autor
- Institute for Ecology of Industrial Areas,Katowice, Poland
autor
- Institute for Ecology of Industrial Areas,Katowice, Poland
- Department of Energy Saving and Air Protection, Central Mining Institute, Katowice, Poland
autor
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
autor
- Institute for Ecology of Industrial Areas,Katowice, Poland
autor
- Silesian University of Technology, Poland
Bibliografia
- 1. Bassin, J.; Rachid, C.; Vilela, C. Cao, S.; Peixoto, R. & Dezotti, M. (2017). Revealing the bacterial profile of an anoxic-aerobic moving-bed biofilm reactor system treating a chemical industry wastewater, International Biodeterioration & Biodegradation, 120, pp. 152–160. DOI:10.1016/j.ibiod.2017.01.036
- 2. Bedogni, G.L.; Massello, F. L.; Giaveno, A.; Donati, E.R. & Urbieta, M.S. (2020). A deeper look into the biodiversity of the extremely acidic copahue volcano - Río Agrio system in Neuquén, Argentina, Microorganisms, 8, 58. DOI:10.3390/microorganisms8010058
- 3. Chen, T.; Wu, Y.; Wang, J. & Philippe, C. F. X. (2022). Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis, International Journal of Environmental Research and Public Health, 19, 8800. DOI:10.3390/ijerph19148800
- 4. Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes, Current Opinion in Microbiology, 24, pp. 88-95. DOI:10.1016%2Fj.mib.2015.01.006
- 5. Gawroński, S., Łutczyk, G.; Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils, Archives of Environmental Protection, 48, 2, pp. 24-33. DOI:10.24425/aep.2022.140763
- 6. Grabowski, J., Korczak, K. & Tokarz, A. (2021). Aquatic risk assessment based on the results of research on mine waters as a part of a pilot underground coal gasification process, Process Safety and Environmental Protection, 148, pp. 548-558. DOI:10.1016/j.psep.2020.10.003
- 7. Grady, E.N., MacDonald, J., Richman, A. & Yuan, Z.C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. DOI:10.1186/s12934-016-0603-7
- 8. Guisado, I.M., Purswani, J., Gonzales-Lopez, J. & Pozo, C. (2015). Physiological and genetic screening methods for isolation of methyl-tert-butyl-ether-degrading bacteria for bioremediation purposes, International Biodeterioration and Biodegradation, 97, pp. 67-74. DOI:10.1016/j.ibiod.2014.11.008
- 9. Jałowiecki, Ł., Borgulat, J.; Strugała-Wilczek, A., Glaser, M. & Płaza, G. (2024). Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach, Journal of Ecological Engineering, 25, pp. 62–71. DOI:10.12911/22998993/176143
- 10. Jayapal, A., Chaterjee, T. & Sahariah, B.P. (2023). Bioremediation techniques for the treatment of mine tailings: A review, Soil Ecology Letters, 5, 220149. DOI:10.1007/s42832-022-0149-z
- 11. Kamika, I., Azizi, S. & Tekere, M. (2016). Microbial profiling of South African acid mine water samples using next generation sequencing platform, Applied. Microbiology and Biotechnology, 100, pp.6069–6079. DOI:10.1007/s00253-016-7428-5
- 12. Kapusta, K. & Stańczyk, K. (2015). Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect, Ecotoxicology and Environmental Safety, 112, pp. 105-113. DOI:10.1016/j.ecoenv.2014.10.038
- 13. Karn, S.K., Chakrabarti, S.K. & Reddy, M.S. (2011). Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill, Biodegradation, 22, pp. 63-69. DOI:10.1007/s10532-010-9376-6
- 14. Kochhar, N., Kavya, I.K., Shrivvastava, S., Ghosh, A., Rawat, V.S., Sodhi, K.K. & Kumar, M. (2022) Perspectives on the microorganisms of extreme environments and their applications, Current Research Microbial Sciences. 3, 100134. DOI:10.1016/j.crmicr.2022.100134
- 15. Liu, F., Hu, X., Zhao, X., Guo, H. & Zhao, Y. (2019). Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant, Environmental Engineering Science, 36, pp. 172-178. DOI:10.1089/ees.2018.0280
- 16. Luo, Z., Ma, J., Chen, F., Li, X., Zhang, Q. & Yang, Y. (2020). Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China, Microorganisms, 8, 477. DOI:10.3390/microorganisms8040477
- 17. Mauricio-Gutiérrez, A., Machorro-Velázquez R., Jiménez-Salgado, T.;Vázquez-Crúz C., Sánchez-Alonso, M.P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 46, 4, pp. 59–69. DOI:0.24425/aep.2020.135765
- 18. Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps, Microorganisms, 11, 710. DOI:10.3390/microorganisms11030710
- 19. Nwankwegu, A.S., Zhang, L., Xie, D., Onwosi, C.O., Muhammad, W.I., Odoh, C.K., Sam, K. & Idenyi, J.N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. DOI:10.1016/j.jenvman.2021.114313
- 20. Pankiewicz-Sperka, M., Kapusta, K., Basa, W. & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process - effect of coal properties and gasification pressure, Energies, 14, 6533. DOI:10.3390/en14206533
- 21. Pankiewicz-Sperka, M., Stańczyk, K., Płaza, G., Kwaśniewska, J. & Nałęcz-Jawecki, G. (2014). Assessment of the chemical, microbiological and toxicological aspects pf post-processing water from underground coal gasification, Ecotoxicology and Environmental Safety, 108, pp. 294-301. DOI:10.1016/j.ecoenv.2014.06.036
- 22. Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters, Environmental Toxicology, 18, pp. 395–402. DOI:10.1002/tox.10141.
- 23. Rappaport, H.B. & Oliverio, A.M. (2023). Extreme environments offer an unprecedent opportunity to understand microbial eukaryotic ecology, evolution, and genome biology, Nature Communication, 14, 4959. DOI:10.1038/s41467-023-40657-4
- 24. Sharma, S. & Bhattacharya, A. (2017) Drinking water contamination and treatment techniques. Appied Water Science 7, pp. 1043-1067. DOI:10.1007/s13201-016-0455-7
- 25. Smoliński, A.. Stańczyk, K.. Kapusta, K. & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process, Water Science and Technology, 67, pp. 644-650. DOI:10.2166/wst.2012.558
- 26. Thukral, A.K. (2017). A review on measurement of alpha diversity in biology, Agricultural Research Journal, 54, 1. DOI:10.5958/2395-146X.2017.00001.1
- 27. Timkina, E., Drabova, L., Palyova, A,, Rezanka, T., Matatkova, O. & Kolouchova, I. (2020). Kocuria strains from unique radon spring water from Jachymov Spa, Fermentation, 8, 35. DOI:10.3390/fermentation8010035
- 28. Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García F. & Paredes, J.I. (2023). Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products, Energies, 16, 4455. DOI:10.3390/en16114455
- 29. Xu, B., Chen, L., Xing, B., Li, Z., Zhang, L., Yi, G., Huang, G. & Mohanty, M.K. (2017). Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol, Process Safety Environmental Protection, 107, pp. 147-152. DOI:10.1016/j.psep.2017.02.007
- 30. Yang, Y., Wang, L., Xiang, F., Zhao, L. & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones, International Journal of Environmental Research and Public Health, 17, 436. DOI:10.3390/ijerph17020436
- 31. Zwain, H., Al-Marzook, F., Nile, B., Ali Jeddoa, Z., Atallah, A., Dahlan, I. & Hassan, W. (2021). Morphology analysis and microbial diversity in novel anaerobic baffled reactor treating recycled paper mill wastewater, Archives of Environmental Protection, 47, 4, pp. 9–17. DOI:10.24425/aep.2021.139498
- 32. Bassin, J.; Rachid, C.; Vilela, C. Cao, S.; Peixoto, R. & Dezotti, M. (2017). Revealing the bacterial profile of an anoxic-aerobic moving-bed biofilm reactor system treating a chemical industry wastewater, International Biodeterioration & Biodegradation, 120, pp. 152-160. DOI:10.1016/j.ibiod.2017.01.036
- 33. Bedogni, G.L.; Massello, F. L.; Giaveno, A.; Donati, E.R. & Urbieta, M.S. (2020). A deeper look into the biodiversity of the extremely acidic copahue volcano - Río Agrio system in Neuquén, Argentina, Microorganisms, 8, 58. DOI:10.3390/microorganisms8010058
- 34. Chen, T.; Wu, Y.; Wang, J. & Philippe, C. F. X. (2022). Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis, International Journal of Environmental Research and Public Health, 19, 8800. DOI:10.3390/ijerph19148800
- 35. Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes, Current Opinion in Microbiology, 24, pp. 88-95. DOI:10.1016%2Fj.mib.2015.01.006
- 36. Gawroński, S., Łutczyk, G.; Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils, Archives of Environmental Protection, 48, 2, pp. 24-33. DOI:10.24425/aep.2022.140763
- 37. Grabowski, J., Korczak, K. & Tokarz, A. (2021). Aquatic risk assessment based on the results of research on mine waters as a part of a pilot underground coal gasification process, Process Safety and Environmental Protection, 148, pp. 548-558. DOI:10.1016/j.psep.2020.10.003
- 38. Grady, E.N., MacDonald, J., Richman, A. & Yuan, Z.C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. DOI:10.1186/s12934-016-0603-7
- 39. Guisado, I.M., Purswani, J., Gonzales-Lopez, J. & Pozo, C. (2015). Physiological and genetic screening methods for isolation of methyl-tert-butyl-ether-degrading bacteria for bioremediation purposes, International Biodeterioration and Biodegradation, 97, pp. 67-74. DOI:10.1016/j.ibiod.2014.11.008
- 40. Jałowiecki, Ł., Borgulat, J.; Strugała-Wilczek, A., Glaser, M. & Płaza, G. (2024). Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach, Journal of Ecological Engineering, 25, pp. 62-71. DOI:10.12911/22998993/176143
- 41. Jayapal, A., Chaterjee, T. & Sahariah, B.P. (2023). Bioremediation techniques for the treatment of mine tailings: A review, Soil Ecology Letters, 5, 220149. DOI:10.1007/s42832-022-0149-z
- 42. Kamika, I., Azizi, S. & Tekere, M. (2016). Microbial profiling of South African acid mine water samples using next generation sequencing platform, Applied. Microbiology and Biotechnology, 100, pp.6069-6079. DOI:10.1007/s00253-016-7428-5
- 43. Kapusta, K. & Stańczyk, K. (2015). Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect, Ecotoxicology and Environmental Safety, 112, pp. 105-113. DOI:10.1016/j.ecoenv.2014.10.038
- 44. Karn, S.K., Chakrabarti, S.K. & Reddy, M.S. (2011). Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill, Biodegradation, 22, pp. 63-69. DOI:10.1007/s10532-010-9376-6
- 45. Kochhar, N., Kavya, I.K., Shrivvastava, S., Ghosh, A., Rawat, V.S., Sodhi, K.K. & Kumar, M. (2022) Perspectives on the microorganisms of extreme environments and their applications, Current Research Microbial Sciences. 3, 100134. DOI:10.1016/j.crmicr.2022.100134
- 46. Liu, F., Hu, X., Zhao, X., Guo, H. & Zhao, Y. (2019). Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant, Environmental Engineering Science, 36, pp. 172-178. DOI:10.1089/ees.2018.0280
- 47. Luo, Z., Ma, J., Chen, F., Li, X., Zhang, Q. & Yang, Y. (2020). Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China, Microorganisms, 8, 477. DOI:10.3390/microorganisms8040477
- 48. Mauricio-Gutiérrez, A., Machorro-Velázquez R., Jiménez-Salgado, T.;Vázquez-Crúz C., Sánchez-Alonso, M.P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 46, 4, pp. 59–69. DOI:0.24425/aep.2020.135765
- 49. Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps, Microorganisms, 11, 710. DOI:10.3390/microorganisms11030710
- 50. Nwankwegu, A.S., Zhang, L., Xie, D., Onwosi, C.O., Muhammad, W.I., Odoh, C.K., Sam, K. & Idenyi, J.N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. DOI:10.1016/j.jenvman.2021.114313
- 51. Pankiewicz-Sperka, M., Kapusta, K., Basa, W. & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process - effect of coal properties and gasification pressure, Energies, 14, 6533. DOI:10.3390/en14206533
- 52. Pankiewicz-Sperka, M., Stańczyk, K., Płaza, G., Kwaśniewska, J. & Nałęcz-Jawecki, G. (2014). Assessment of the chemical, microbiological and toxicological aspects pf post-processing water from underground coal gasification, Ecotoxicology and Environmental Safety, 108, pp. 294-301. DOI:10.1016/j.ecoenv.2014.06.036
- 53. Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters, Environmental Toxicology, 18, pp. 395-402. DOI:10.1002/tox.10141.
- 54. Rappaport, H.B. & Oliverio, A.M. (2023). Extreme environments offer an unprecedent opportunity to understand microbial eukaryotic ecology, evolution, and genome biology, Nature Communication, 14, 4959. DOI:10.1038/s41467-023-40657-4
- 55. Sharma, S. & Bhattacharya, A. (2017) Drinking water contamination and treatment techniques. Appied Water Science 7, pp. 1043-1067. DOI:10.1007/s13201-016-0455-7
- 56. Smoliński, A.. Stańczyk, K.. Kapusta, K. & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process, Water Science and Technology, 67, pp. 644-650. DOI:10.2166/wst.2012.558
- 57. Thukral, A.K. (2017). A review on measurement of alpha diversity in biology, Agricultural Research Journal, 54, 1. DOI:10.5958/2395-146X.2017.00001.1
- 58. Timkina, E., Drabova, L., Palyova, A,, Rezanka, T., Matatkova, O. & Kolouchova, I. (2020). Kocuria strains from unique radon spring water from Jachymov Spa, Fermentation, 8, 35. DOI:10.3390/fermentation8010035
- 59. Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García F. & Paredes, J.I. (2023). Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products, Energies, 16, 4455. DOI:10.3390/en16114455
- 60. Xu, B., Chen, L., Xing, B., Li, Z., Zhang, L., Yi, G., Huang, G. & Mohanty, M.K. (2017). Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol, Process Safety Environmental Protection, 107, pp. 147-152. DOI:10.1016/j.psep.2017.02.007
- 61. Yang, Y., Wang, L., Xiang, F., Zhao, L. & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones, International Journal of Environmental Research and Public Health, 17, 436. DOI:10.3390/ijerph17020436
- 62. Zwain, H., Al-Marzook, F., Nile, B., Ali Jeddoa, Z., Atallah, A., Dahlan, I. & Hassan, W. (2021). Morphology analysis and microbial diversity in novel anaerobic baffled reactor treating recycled paper mill wastewater, Archives of Environmental Protection, 47, 4, pp. 9-17. DOI:10.24425/aep.2021.139498
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-410b1ecf-a0e7-432f-aa6d-1b7428fe23ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.