PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a highly sensitive blood sensor based on a 2D photonic crystal L3 cavity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a 2D photonic crystal (PC) biosensor is proposed. The basic PC structure consists of 17×15 holes in X and Z direction over a silicon slab of refractive index (RI) equal to 3.46.The sensor structure consists of two L3 cavities created on the either side of a defect waveguide.The band diagram of the proposed structure is analyzed using plane wave expansion method (PWEM) and simulations of light propagation through the biosensor are carried out using 2D finite difference time domain method (2D-FDTDM). The parameters are optimized to obtain the best possible performance. The sensitivity of the proposed biosensor is determined by the shift in the wavelength of transmission deep as a function of RI of sensing holes. The proposed biosensor exhibits a high-quality factor (Q-factor) of 2587, with a spectral width of 0.6 nm (at the wavelength of 1552 nm) of the transmission deep. The biosensor has ultra-compact footprint of 29 μm2. Further, it shows a high figure of merit (666 RIU–1), a low detection limit (1.49×10–4 RIU), and a maximum sensitivity of 400 nm/RIU. The proposed biosensor might have potential applications in detection of many blood related diseases.
Czasopismo
Rocznik
Strony
157--168
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Department of Physics, Central University of Jharkhand Ranchi, 835222, India
  • Department of Physics, Central University of Jharkhand Ranchi, 835222, India
Bibliografia
  • [1] Sharma P., Medhekar S., Frequency comb generation in rod type 2D photonic crystal coupled cavity waveguide, Journal of Optics 53, 2023: 590-595. https://doi.org/10.1007/s12596-023-01218-6
  • [2] Sharma P., Gupta M.M., Ghosh N., Medhekar S., 2D photonic crystal based all-optical add-drop filter consisting of square ring resonator, Materials Today: Proceedings, Vol. 66, Part 7, 2022: 3344 -3348. https://doi.org/10.1016/j.matpr.2022.07.062
  • [3] Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D., Photonic Crystals: Molding the Flow of Light, 2011.
  • [4] Sharma P., Medhekar S., Ring resonator-based highly sensitive chemical/biochemical sensor created on holes in silicon slab 2D photonic crystal, Journal of Optics 52, 2023: 2315-2322. https://doi.org/10.1007/s12596-023-01149-2
  • [5] Sharma P., Ghosh N., Gupta M.M., Medhekar S., Add-drop filter and refractive index and temperature sensor using 2D photonic crystal ring resonator, International Journal of Optics and Photonics (IJOP) 16(2), 2022: 221-232. https://doi.org/10.52547/ijop.16.2.221
  • [6] Krishnamoorthi B., Caroline Elizabeth B., Michael M., Thirumaran S., A novel rhombic shaped photonic crystal bio-sensor for identifying disorders in the blood samples, Optical and Quantum Electronics 55, 2023: 312. https://doi.org/10.1007/s11082-023-04584-4
  • [7] Massoudi R., Najjar M., Mehdizadeh F., Janyani V., Investigation of resonant mode sensitivity in PhC based ring resonators, Optical and Quantum Electronics 51, 2019: 87. https://doi.org/10.1007/s11082-019-1793-0
  • [8] Rajasekar R., Jayabarathan J.K., Robinson S., Nano-optical filter based on multicavity coupled photonic crystal ring resonator, Physica E: Low-dimensional Systems and Nanostructures 114, 2019: 113591. https://doi.org/10.1016/j.physe.2019.113591
  • [9] Hosseinzadeh Sani M., Saghaei H., Mehranpour M.A., Tabrizi A.A., A novel all-optical sensor design based on a tunable resonant nanocavity in photonic crystal microstructure applicable in MEMS accelerometers, Photonic Sensors 11, 2021: 457-471. https://doi.org/10.1007/s13320-020-0607-0
  • [10] Radhouene M., Balaji V.R., Najjar M., Robinson S., Janyani V., Murugan M., Rounded square ring resonator based add drop filter for WDM applications using two dimensional photonic crystals, Optical and Quantum Electronics 53, 2021: 273. https://doi.org/10.1007/s11082-021-02924-w
  • [11] Sharma P., Medhekar S., “Fluid nonlinear coefficient sensor” designed on 2D photonic crystal, Journal of Optics 53, 2024: 4616-4622. https://doi.org/10.1007/s12596-023-01617-9
  • [12] Olyaee S., Mohebzadeh-Bahabady A., Designing a novel photonic crystal nano-ring resonator for biosensor application, Optical and Quantum Electronics 47, 2015: 1881-1888. https://doi.org/ 10.1007/s11082-014-0053-6
  • [13] Sharma P., Medhekar S., Ultra-compact photonic crystal nanocavity-based sensor for simultaneous detection of refractive index and temperature, Journal of Optics 52, 2023: 504-509. https://doi.org/ 10.1007/s12596-022-01037-1
  • [14] Lifson M.A., Ozen M.O., Inci F., Wang S.Q., Inan H., Baday M., Henrich T.J., Demirci U., Advances in biosensing strategies for HIV-1 detection, diagnosis, and therapeutic monitoring, Advanced Drug Delivery Reviews 103, 2016: 90-104. https://doi.org/10.1016/j.addr.2016.05.018
  • [15] López-Alonso J. M., Rico-García J. M., Alda J., Photonic crystal characterization by FDTD and principal component analysis, Optics Express 12(10), 2004: 2176-2186. https://doi.org/10.1364/ opex.12.002176
  • [16] Shi S., Chen C., Prather D.W., Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers, Journal of the optical society of America A 21(9), 2004: 1769-1775. https://doi.org/10.1364/JOSAA.21.001769
  • [17] Threm D., Nazirizadeh Y., Gerken M., Photonic crystal biosensors towards on-chip integration, Journal of Biophotonics 5(8-9), 2012: 601-616. https://doi.org/10.1002/jbio.201200039
  • [18] Lifson M.A., Miller B.L., Photonic crystals as robust label-free biosensors, [In] Serpe M.J., Kang Y., Zhang Q.M. [Eds.], Photonic Materials for Sensing, Biosensing and Display Devices, Springer Series in Materials Science, Vol. 229, Springer, Cham, 2016. https://doi.org/10.1007/ 978-3-319-24990-2_7
  • [19] Liang L., Xie F., Jin L., Yang B., Sun L.P., Guan B.O., Optical microfiber biomedical sensors: Classification, applications, and future perspectives, Advanced Sensor Research 4(5), 2025: 2400185. https://doi.org/10.1002/adsr.202400185
  • [20] Inan H., Poyraz M., Inci F., Lifson M.A., Baday M., Cunningham B.T., Demirci U., Photonic crystals: emerging biosensors and their promise for point-of-care applications, Chemical Society Reviews 46(2), 2017: 366-388. https://doi.org/10.1039/C6CS00206D
  • [21] Jang H., Karnadi I., Pramudita P., Song J.H., Soo Kim K., Lee Y.H., Sub-microWatt threshold nanoisland lasers, Nature Communications 6, 2015: 8276. https://doi.org/10.1038/ncomms9276
  • [22] Bogaerts W., De Heyn P., Van Vaerenbergh T., De Vos K., Kumar Selvaraja S., Claes T., Dumon P., Bienstman P., Van Thourhout D., Baets R., Silicon microring resonators, Laser and Photonics Reviews 6(1), 2012: 47-73. https://doi.org/10.1002/lpor.201100017
  • [23] Akahane Y., Asano T., Song B.-S., Noda, S., High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature 425, 2003: 944-947. https://doi.org/10.1038/nature02063
  • [24] Zhang Y.N., Zhao Y., Lv R.Q., A review for optical sensors based on photonic crystal cavities, Sensors and Actuators A: Physical 233, 2015: 374-389. https://doi.org/10.1016/j.sna.2015.07.025
  • [25] Wang F., Sigmund O., Optimization of photonic crystal cavities, 2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Copenhagen, Denmark, 2017: 39-40. https://doi.org/10.1109/NUSOD.2017.8009980
  • [26] Saldutti M., Xiong M., Dimopoulos E., Yu Y., Gioannini M., Mørk J., Modal properties of photonic crystal cavities and applications to lasers, Nanomaterials 11(11), 2021: 3030. https:// doi.org/10.3390/nano11113030
  • [27] Benmerkhi A., Bouchemat M., Bouchemat T., Ultrahigh-Q of the L3 photonic crystal microcavity, Optik 124(22), 2013: 5719-5722. https://doi.org/10.1016/j.ijleo.2013.04.028
  • [28] Kuramochi E., Taniyama H., Tanabe T., Shinya A., Notomi M., Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers, Applied Physics Letters 93(11), 2008: 111112. https://doi.org/10.1063/1.2987459
  • [29] Song B.S., Noda S., Asano T., Akahane Y., Ultra-high-Q photonic double-heterostructure nanocavity, Nature Materials 4, 2005: 207-210. https://doi.org/10.1038/nmat1320
  • [30] Shi P., High-Q photonic crystal heterostructure microcavities by tuning air holes, Optics Communications 446, 2019: 88-92. https://doi.org/10.1016/j.optcom.2019.04.072
  • [31] Parandin F., Heidari F., Aslinezhad M., Parandin M. M., Roshani S., Roshani S., Design of 2D photonic crystal biosensor to detect blood components, Optical and Quantum Electronics 54, 2022: 618. https://doi.org/10.1007/s11082-022-03945-9
  • [32] Karki B., Vasudevan B., Uniyal A., Pal A., Srivastava V., Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor, Optik 270, 2022: 169947. https:// doi.org/10.1016/j.ijleo.2022.169947
  • [33] Angadala S., Cheerla S., Malakalapalli S., Vasimalla Y., Ben Khalifa S., Chebaane S., A label -free surface plasmon resonance biosensor for chemical sensing, Plasmonics, 2025. https://doi.org/ 10.1007/s11468-025-03168-0
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4108ab74-22dc-4acd-b623-12e731b09663
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.