PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and properties of laser-cladded Inconel 625-based in situ composite coatings on S355JR substrate modified with Ti and C powders

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the research results on the production of laser-cladded Inconel-625 in situ composite coatings on the S355JR substrate by addition of titanium and graphite powders to pure Inconel 625 alloy powder mixture for increased hardness and erosive wear resistance of the coatings. The research featured in the article includes penetrant testing, macro-, and microscopic observations of produced coatings, phase and chemical composition analysis, hardness and solid particle erosion tests. The results showed that the addition of titanium and graphite powders resulted in the composite microstructure formation by precipitation of Ti, Nb, Mo, and C-rich blocky and eutectic particles during crystallization. The conducted tests revealed that the microstructure change resulted in an increase in hardness and erosive wear resistance by 27% and 30%, respectively.
Wydawca
Rocznik
Strony
14--27
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Gliwice, Poland
  • Silesian University of Technology, Gliwice, Poland
autor
  • Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects. Int Mater Rev. 2019;64(6): 355–80. doi:10.1080/09506608.2018.1516713.
  • [2] Farahmand P, Kovacevic R. Corrosion and wear behavior of laser cladded Ni-WC coatings. Surf Coat Technol. 2015;276: 121–35. doi:10.1016/j.surfcoat.2015.06.039.
  • [3] Deng P, Yao C, Feng K, Huang X, Li Z, Li Y, et al. Enhanced wear resistance of laser cladded graphene nanoplatelets reinforced Inconel 625 superalloy composite coating. Surf Coat Technol. 2018;335: 334–44. doi:10.1016/j.surfcoat.2017.12.047.
  • [4] Chen Y, Lu F, Zhang J, Nie P, Hosseini SRE, Feng K, et al. Laser powder deposition of carbon nanotube reinforced nickel-based superalloy Inconel 718. Carbon. 2016;107: 361–70. doi:10.1016/j.carbon.2016.06.014.
  • [5] Lei J, Shi C, Zhou S, Gu Z, Zhang LC. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding. Surf Coat Technol. 2018;334: 274–85. doi:10.1016/j.surfcoat.2017.11.051.
  • [6] Janicki D, Musztyfaga-Staszuk M. Direct diode laser cladding of Inconel 625/WC composite coatings. Stroj Vestn/J Mech Eng. 2016;62(6): 363–72. doi:10.5545/svjme.2015.3194.
  • [7] Hong C, Gu D, Dai D, Gasser A, Weisheit A, Kelbassa I, et al. Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt Laser Technol. 2013;54: 98–109. doi:10.1016/j.optlastec.2013.05.011.
  • [8] Pizzatto A, Teixeira MF, Rabelo A, Falcade T, Scheid A. Microstructure and wear behavior of NbC-reinforced Ni-based alloy composite coatings by laser cladding. Mater Res. 2021;24(3): e20200447. doi:10.1590/1980-5373-MR-2020-0447.
  • [9] Yu T, Tang H. Microstructure and high-temperature wear behavior of laser clad TaC-reinforced Ni-Al-Cr coating. Appl Surf Sci. 2022;592: 153263. doi:10.1016/j.apsusc.2022.153263.
  • [10] Janicki D. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles. Opt Laser Technol. 2017;94: 6–14. doi:10.1016/j.optlastec.2017.03.007.
  • [11] Xu Z, Xie Y, Ebrahimnia M, Dang H. Effect of B4C nanoparticles on microstructure and properties of laser cladded IN625 coating. Surf Coat Technol. 2021;416: 127154. doi:10.1016/j.surfcoat.2021.127154.
  • [12] Muvvala G, Karmakar DP, Nath AK. Online assessment of TiC decomposition in laser cladding of metal matrix composite coating. Mater Des. 2017;121: 310–20. doi:10.1016/j.matdes.2017.02.061.
  • [13] Chen L, Yu T, Chen X, Zhao Y, Guan C. Process optimization, microstructure and microhardness of coaxial laser cladding TiC reinforced Ni-based composite coatings. Opt Laser Technol. 2022;152: 108129. doi:10.1016/j.optlastec.2022.108129.
  • [14] Kotarska A, Poloczek T, Janicki D. Characterization of the structure, mechanical properties and erosive resistance of the laser cladded Inconel 625-based coatings reinforced by TiC particles. Materials. 2021;14: 2225. doi:10.3390/ma14092225.
  • [15] Kołodziejczak P, Bober M, Chmielewski T. Wear resistance comparison research of high-alloy protective coatings for power industry prepared by means of CMT cladding. Appl. Sci. 2022;12: 4568. doi:10.3390/app12094568.
  • [16] Czupryński A, Mele C. Properties of flame spraying coatings reinforced with particles of carbon nanotubes. Adv Mater Sci. 2021;21(1): 57–76. doi:10.2478/adms-2021-0005.
  • [17] Kotarska A. The laser alloying process of ductile cast iron surface with titanium. Metals. 2021;11(2): 282. doi:10.3390/met11020282.
  • [18] Poloczek T, Janicki D, Górka J, Kotarska A. Effect of Ti and C alloyants on the microstructure of laser cladded cobalt-chromium coatings. IOP Conf Ser Mater Sci Eng. 2021;1182: 012063. doi:10.1088/1757-899X/1182/1/012063.
  • [19] Janicki D. In-situ synthesis of titanium carbide particles in and iron matrix during diode-laser surface alloying of ductile cast iron. Mater Technol. 2017;51(2): 317–21. doi:10.17222/mit.2015.198.
  • [20] Lont A, Górka J, Janicki D, Matus K. The laser alloying process of ductile cast iron surface with titanium powder in nitrogen atmosphere. Coatings. 2022;12(2): 227. doi:10.3390/coatings12020227.
  • [21] Shuting S, Hanguang F, Xuelong P, Xingye G, Jian L, Yongping L, et al. Effect of liquid nitrogen cooling on grain growth and properties of laser cladding in-situ (Ti, Nb)C/Ni composite coatings. Mater Charact. 2019;152: 115–29. doi:10.1016/j.matchar.2019.04.012.
  • [22] Chen L, Zhao Y, Meng F, Yu T, Ma Z, Qu S, et al. Effect of TiC content on the microstructure and wear performance of in situ synthesized Ni-based composite coatings by laser direct energy deposition. Surf Coat Technol. 2022;444: 128678. doi:10.1016/j.surfcoat.2022.128678.
  • [23] Gao Z, Geng H, Qiao Z, Sun B, Gao Z, Zhang C. In situ TiBX/TiX NiY/TiC reinforced Ni60 composites by laser cladding and its effect on the tribological properties. Ceram Int. 2023;49: 6409–18. doi:10.1016/j.ceramint.2022.10.087.
  • [24] Wu F, Chen T, Wang H, Liu D. Effect of Mo on microstructures and wear properties in situ synthesized Ti(C,N)/Ni-based composite coatings by laser cladding. Materials. 2017;10: 1047. doi:10.3390/ma10091047.
  • [25] Muvvala G, Karmakar DP, Nath AK. In-process detection of microstructural changes in laser cladding of in-situ Inconel 718/TiC metal matrix composite coating. J Alloys Compd. 2018;740: 545–58. doi:10.1016/j.jallcom.2017.12.364.
  • [26] ASTM International. E407-99. Standard practice for microetching metals and alloys. PA, USA; 1999.
  • [27] ASTM International. G76-04. Standard test method for conducting erosion tests by solid particle impingement using gas jets. PA, USA; 2004.
  • [28] Cieslak M J, Headley TJ, Romig AD, Kollie T. A melting and solidification study of alloy 625. Metall Trans A. 1988;19A: 2319–31. doi:10.1007/BF02645056.
  • [29] Cieslak M J. The welding and solidification metallurgy of alloy 625. Weld J. 1991;70: 49–56.
  • [30] Stachowiak GW, Batchelor AW. Engineering tribology. Oxford: Butterworth-Heinemann; 2014. p. 551–6.
  • [31] Solecka M, Kopyściański M, Kusiński J, Kopia A, Radziszewska A. Erosive wear of Inconel 625 alloy coatings deposited by CMT method. Arch Metall Mater. 2016;61(2B): 1201–6. doi:10.1515/amm-2016-0199.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41045803-8c4e-4dab-9121-e33463e2c533
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.