Identyfikatory
Warianty tytułu
Review of the hydrogen sulfide removal methods
Języki publikacji
Abstrakty
Artykuł stanowi przegląd najczęściej stosowanych metod utylizacji siarkowodoru z gazów przemysłowych. W pracy skupiono się przede wszystkim na postępach w zakresie katalitycznego utleniania H2S oraz jego adsorpcji. Dane odnośnie współcześnie otrzymywanych katalizatorów oraz adsorbentów zostały omówione przez autorów oraz zestawione w tabelach.
The issue of utilization of hydrogen sulfide and the reduction of its emissions is a key issue and results from its extraordinary toxicity to both humans and the environment. Due to the strong corrosive properties of H2S, its removal is necessary in every industrial process in which it is present. As the most significant desulfurizing process is considered the Claus process. It is the most widely used method and it is estimated that around 90 - 95% of all recovered sulfur in the world comes from this process. However, the Clauss plant outlet gas typically contains 3 to 5% H2S, so further processes are still required to reduce the hydrogen sulfide concentration to regulations-acceptable levels. This is usually done by catalytic hydrogen sulfide oxidation. Alumina is used as the most common catalyst. Contemporary research in this area focuses on modifying the hierarchical pore structure of Al2O3 and testing obtained alumina as a carrier for active ingredients such as metals and metal oxides. An interesting solution proposed by modern researchers may also be the use of silicon and titanium oxides as carriers for vanadium oxide. An alternative solution to the catalytic combustion of hydrogen sulfide is chemisorption. Theoretically, chemisorption allows the achievement of much lower concentrations of hydrogen sulfide at lower operating costs. The most popular adsorbents include zeolites and activated carbons. Modern research in this field consists in obtaining composite materials based on zeolites or activated carbons. This is usually done by impregnating said materials with metal/metal oxides. It is worth noting that in the case of activated carbons, the interest of scientists also includes obtaining activated carbons from the most ecological materials, such as biomass. Given the growing interest in green materials in general, interest in biochars can be expected to increase in the future.
Rocznik
Tom
Strony
37--47
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
- Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
autor
- Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
Bibliografia
- [1] J. Stetkiewicz, Siarkowodór, Podstawy i Metody Oceny Środowiska Pracy (2011), nr. 4(70), 97-117.
- [2] K. Janoszka, A. Wziątek, J. P. Gromiec, Ocena metod monitoringu stężeń siarkowodoru w po-wietrzu, Medycyna Pracy (2013), 64(3), 449 - 454, DOI: 10.13075/mp.5893.2013.0038.
- [3] O. A. Habeeb, R. Kanthasamy, G. A. M. Ali, S. Sethupathi, R. B. M. Yunus, Hydrogen sulfide emission sources, regulations, and removal techniques: a review, Rev Chem Eng (2017), 837 - 854, DOI: 10.1515/revce-2017-0004.
- [4] A. Bokowa, C.s Diaz, J. A. Koziel, M. McGinley, J. Barclay, G. Schauberger, J. M. Guillot, R. Sneath, L. Capelli, V. Zorich, C. Izquierdo, I. Bilsen, A. C. Romain, M. C. Cabeza, D. Liu, R. Both, H. V. Belois, T. Higuchi, L. Wahe, Summary and Overview of the Odour Regulations Worldwide, Atmosphere (2021), 12, 206, DOI: 10.3390/atmos12020206.
- [5] A. Piéplu, O. Saur, J. C. Lavalley, O. Legendre, C. Nédez, Claus Catalysis and H2S Selective Oxidation, Catalysis Reviews (1998), 40, 409-450, DOI: 10.1080/01614949808007113.
- [6] B. G. Goar, Sulfur recovery technology, Conference: American Institute of Chemical Engineers spring national meeting, New Orlean, LA, USA, 06.04.1986.
- [7] H. M. Tasdemir, Y. Yagizatli, S. Yasyerli, N. Yasyerli, G. Dogu, A new sol-gel route alumina for selective oxidation of H2S to sulfur, The Canadian Journal of Chemical Engineering (2019), 1 - 13, DOI: 10.1002/cjce.23609.
- [8] L. Shen, X. Zheng, G. Lei, X. Li, Y. Cao, L. Jiang, Hierarchically porous γ-Al2O3 nanosheets: facile template-free preparation and reaction mechanism for H2S selective oxidation, Chemical Engineering Journal (2018), 238 -248, DOI: 10.1016/j.cej.2018.03.157.
- [9] S. A. Yashnik, V. V. Kuznetsov, Z. R. Ismagilov, Effect of χ‐alumina addition on H2S oxidation properties of pure and modified γ‐alumina, Chinese Journal of Catalysis (2018), 39, 258 - 274, DOI: 10.1016/S1872‐2067(18)63016‐5.
- [10] A. A. Davydov, V. I. Marshneva, M. L.Shepotko, Metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide: I. The comparison study of the catalytic activity. Mechanism of the interactions between H2S and SO2 on some oxides, Applied Catalysis A: General (2003), 244, 93-100, 10.1016/S0926-860X(02)00573-2.
- [11] H. M. Tasdemir, Y. Yagizatli, S. Yasyerli1, N. Yasyerli, The Catalytic Performance of Sol-Gel Alumina Supported Ti-Ce Catalysts for H2S Selective Oxidation to Elemental Sulfur, Interna-tional Journal of Chemical Reactor Engineering (2018), 17, DOI: 10.1515/ijcre-2018-0157.
- [12] W. Zhao, X. Zheng, S. Liang, X. Zheng, L. Shen, F. Liu, Y. Cao, Z. Wei, L. Jiang, Fe-doped γ-Al2O3 porous hollow microspheres for enhanced oxidative desulfurization: Facile fabrication and reaction mechanism, Green Chemistry (2018), 20, 4645-4654, DOI: 10.1039/C8GC02184H.
- [13] T. Kane, J. G. Caballero, A. Löfberg, Chemical Looping Selective Oxidation of H2S using V2O5 Impregnated over Different Supports as Oxygen Carriers, ChemCatChem (2020), 12, 2569–2579, DOI: 10.1002/cctc.201902031.
- [14] A. H. Abdullah, R. Mat, S. Somderam, A. S. A. Aziz, A. Mohamed, Hydrogen Sulfide Adsorp-tion by Zinc Oxide-Impregnated Zeolite (Synthesized from Malaysian Kaolin) for Biogas Desulfurization, Journal of Industrial and Engineering Chemistry (2018), 65, 334 - 342, DOI: 10.1016/j.jiec.2018.05.003.
- [15] M. J. Jafari, R. Zendehdel, A. Rafieepour, M. Nakhaei Pour, H. Irvani, Comparison of Y and ZSM-5 zeolite modified with magnetite nanoparticles in removal of hydrogen sulfide from the air, International Journal of Environmental Science and Technology volume (2020), 17, 187–194, DOI: 10.1007/s13762-019-02348-w.
- [16] S. Bahraminia, M. Anbia, E. Koohsaryan, Hydrogen sulfide removal from biogas using ion exchanged nanostructured NaA zeolite for fueling solid oxide fuel cells, International Journal of Hydrogen Energy (2020), 45, 31027-31040, DOI: 10.1016/j.ijhydene.2020.08.091.
- [17] H. Sawalha, M. Maghalseh, J. Qutaina, K. Junaidi, E. R. Rene, Removal of hydrogen sulfide from biogas using activated carbon synthesized from different locally available biomass wastes - a case study from Palestine, Bioengineered (2020), 11, 607-618, DOI: 10.1080/21655979.2020.1768736.
- [18] H. Fang, J. Zhao, Y. Fang, J. Huang, Y. Wang, Selective oxidation of hydrogen sulfide to sulfur over activatedcarbon-supported metal oxides, Fuel (2013), 108, 143-148, DOI: 10.1016/j.fuel.2011.05.030.
- [19] A. Choudhury, S. Lansing, Adsorption of hydrogen sulfide in biogas using a novel iron-im-pregnated biochar scrubbing system, Journal of Environmental Chemical Engineering (2021), 9, DOI: 10.1016/j.jece.2020.104837.
- [20] F. Zenga, X. Liaob, J. Luc, D. Pand, Q. Qiud, K. Dinga, W. Zhang, Effect of iron salt modifi-cation on the adsorption of hydrogen sulfide by sludge-based activated carbon, Desalination and Water Treatment Science and Engineering (2020), 202, 61 - 70, DOI: 10.5004/dwt.2020.26705.
- [21] I. E. Barkovskii, A. I. Lysikov, J. V. Veselovskaya, N. V. Maltseva, A. G. Okunev, Alkaline-Modified Activated Carbons for Removing Hydrogen Sulfide from Air via Sorption and Cata-lytic Oxidation: Studying the Effect of Thermal Treatment on the Properties of Materials, Ca-talysis and Environmental Protection (2019), 11, 335 - 341, DOI: 10.1134/S2070050419040020.
- [22] N. N. Zulkefli, L. S. M. Veeran, A. M. I. N. Azam, M. S. Masdar, W. N. R. W. Isahak, Effect of Bimetallic-Activated Carbon Impregnation on Adsorption–Desorption Performance for Hy-drogen Sulfide (H2S) Capture, Materials (2022), 15, 5409, DOI: 10.3390/ma15155409.
- [23] S. Lee, T. Lee, D. Kim, Adsorption of hydrogen sulfide from gas streams using amorphous composite of #-FeOOH and activated carbon powder, Industrial & Engineering Chemistry Re-search (2017). 56(11), 3116–3122, DOI: 10.1021/acs.iecr.6b04747
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-410267f8-d5a4-4c1e-b86c-c8d0df6ed87e