PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On inverse form finding for orthotropic plasticity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inverse form finding aims to determine the optimum blank design of a workpiece whereby the desired spatial configuration that is obtained after a forming process, the boundary conditions and the applied loads are known. Inputting the optimal material configuration, a subsequent FEM computation then has to result exactly in the nodal coordinates of the desired deformed workpiece. Germain et al. recently presented a new form finding strategy for isotropic elastoplasticity. Switching between the direct and the inverse mechanical formulation, while fixing the internal plastic variables in the inverse step, uniquely detects the undeformed configuration iteratively. In this contribution, the developed recursive algorithm is extended to anisotropic plasticity. In particular the orthotropic Hill yield function is considered. A load and a displacement-controlled example demonstrate that this new strategy requires only a few iterations to determine the optimal initial design whereby an almost linear convergence rate is obtained.
Rocznik
Strony
337--348
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Chair of Applied Mechanics, University Erlangen-Nuremberg Egerlandstrasse 5, 91058 Erlangen, Germany
autor
  • Chair of Applied Mechanics, University Erlangen-Nuremberg Egerlandstrasse 5, 91058 Erlangen, Germany
autor
  • Chair of Applied Mechanics, University Erlangen-Nuremberg Egerlandstrasse 5, 91058 Erlangen, Germany
Bibliografia
  • [1] S. Germain, P. Landkammer, P. Steinmann. On a recursive formulation for solving inverse form finding problems in isotropic elastoplasticity. Advanced Modeling and Simulation in Engineering Sciences, submitted in 2013.
  • [2] S. Germain, P. Steinmann. Shape optimization for anisotropic elastoplasticity in logarithmic strain space. Proceedings of the XIth Int. Conf. on Computational Plasticity, ISBN: 978-84-89925-73-1, 1479–1490, 2011.
  • [3] S. Acharjee, N. Zabaras. The continuum sensitivity method for computational design of three-dimensional de formation processes. Comput. Methods Appl. Mech. Eng., 195: 6822–6842, 2006.
  • [4] S. Germain, P. Steinmann. On a recursive algorithm for avoiding mesh distortion in inverse form finding. Journal of the Serbian Society for Computational Mechanics (JSSM), 6(1): 216–234, 2012
  • [5] M. Scherer, R. Denzer, P. Steinmann. A fictious energy approach for shape optimization. Int. J. Numer. Meth. Eng., 82: 269–302, 2010.
  • [6] S. Govindjee, P.A. Mihalic. Computational methods for inverse ?nite elastostatics. Comput. Methods Appl. Mech. Eng., 136: 47–57, 1996.
  • [7] S. Govindjee, P.A. Mihalic. Finite deformation inverse design modeling with temperature changes, axis-symmetry and anisotropy. UCB/SEMM-1999/01, University of California, Berkeley, 1999.
  • [8] S. Germain, M. Scherer, P. Steinmann. On inverse form finding for anisotropic hyperelasticity in the logarithmic strain space. International Journal of Structural Changes in Solids, 2(2): 1–16, 2011.
  • [9] S. Germain, P. Steinmann. A comparison between inverse form finding and shape optimization methods for anisotropic hyperelasticity in the logarithmic strain space. Proc. Appl. Math. Mech. (PAMM), 11: 367–368, 2011.
  • [10] A. Ask, R. Denzer, A. Menzel, M. Ristinmaa. Inverse-motion-based form finding for quasi- incompressible fnite electroelasticity. Int. J. Numer. Meth. Eng., 94(6): 554–572, 2013.
  • [11] S. Germain, P. Steinmann. On inverse form ?nding for anisotropic elastoplastic materials. AIP Conference Proceedings, 1353: 1169–1174, 2011.
  • [12] C. Miehe, N. Apel, M. Lambrecht. Anisotropic additive plasticity in the logarithmic strain space, modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comput. Methods Appl. Mech. Eng., 191: 5385–5425, 2002.
  • [13] N. Apel. Approaches to the description of anisotropic material behavior at finite elastic and plastic deformations– theory and numerics, PhD dissertation, University of Stuttgart, 2004.
  • [14] C. Miehe, M. Lambrecht. Algorithms for computation of stresses and elasticity moduli in terms of the Seth-Hill’s family of generalized strain tensors. Comput. Methods Appl. Mech. Eng., 17: 337–353, 2001.
  • [15] R. Mahnken. Anisotropy in geometrically non-linear elasticity with generalized Seth-Hill strain tensors projected to invariant subspaces. Comm. Num. Meth. Eng., 21: 405–418, 2005.
  • [16] C. Miehe, N. Apel. Anisotropic elastoplastic analysis of shells at large strains. A comparison of multiplicative and additive approaches to enhanced finite element design and constitutive modelling. Int. J. Numer. Meth. Eng., 61: 2067–2113, 2004.
  • [17] R. Hill. The mathematical theory of plasticity (reprint), Clarendon Press, Oxford, 1989
  • [18] R. De Borst, P.H. Feenstra. Studies in anisotropic plasticity with reference to the Hill criterion. Int. J. Numer. Meth. Eng., 29: 315–336, 1990.
  • [19] S. Germain. On inverse form finding for anisotropic materials in the logarithmic strain space. PhD dissertation, University of Erlangen, 2013.
  • [20] E. Lehmann, S. Schmaltz, S. Germain, D. Fassmann, C. Weber, S. Loehnert, M. Schaper, F.-W. Bach, P. Steinmann, K. Willner, P. Wriggers. Material model identification for DC04 based on the numerical modelling of the polycrystalline microstructure and experimental data. Key Engineering Materials, 504–506: 993–998, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40f8c6cb-a22a-4474-9add-c5bb25935e87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.