PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid friction stir processing with active cooling approach to enhance superplastic behavior of AA7075 aluminum alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Friction stir processing (FSP) with active cooling approach can be considered as one of the variants of the FSP in order to enhance superplastic behavior. In this study, high strength AA7075 alloy was subjected to normal and hybrid FSP at different cooling medium such as compressed air, water, and CO2 to obtain a variety of cooling rate during the process. Hybrid FSP samples were produced without any processing flaws at a lower processing temperature in comparison to normal FSP sample. Among the hybrid FSP samples, CO2 cooling sample was produced at the lowest processing temperature. Optical and electron microscopy confirmed that microstructures of all the samples were characterized by fine equiaxed grain in the stir zone (SZ). Reduction of grain size in hybrid FSP samples was found due to higher cooling rate, which prevented the coarsening of grains in the SZ. Improvement in grain refinement was observed in the order of normal (4.12 μm), compressed air (3 μm), water (2.64 μm), CO2 (1.96 μm) FSP samples. All FSP samples obtained the superplastic elongation. The highest elongation of 572% was achieved for CO2 cooling sample due to the finest grained microstructure produced at the lowest heat input during FSP.
Rocznik
Strony
1368--1380
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
  • Mechanical Engineering Department, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat, India
  • Mechanical Engineering Department, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat, India
autor
  • State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
  • Institute for Plasma Research, Gandhinagar, Gujarat, India
Bibliografia
  • [1] V. Patel, W.Y. Li, A. Vairis, V.J. Badheka, Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement, Crit. Rev. Solid State Mater. Sci. 44 (5) (2019) 378–426.
  • [2] M.S. Weglowski, Friction stir processing—state of the art, Arch. Civ. Mech. Eng. 18 (1) (2018) 114–129.
  • [3] S. Kumar, Ultrasonic assisted friction stir processing of 6063 aluminum alloy, Arch. Civ. Mech. Eng. 16 (3) (2016) 473–484.
  • [4] M.S. Weglowski, S. Dymek, Relationship between friction stir processing parameters and torque, temperature and the penetration depth of the tool, Arch. Civ. Mech. Eng. 13 (2) (2013) 186–191.
  • [5] A. Heidarzadeh, Tensile behavior, microstructure, and substructure of the friction stir welded 70/30 brass joints: RSM, EBSD, and TEM study, Arch. Civ. Mech. Eng. 19 (1) (2019) 137–146.
  • [6] S. Rathee, S. Maheshwari, A.N. Siddiquee, M. Srivastava, A review of recent progress in solid state fabrication of composites and functionally graded systems via friction stir processing, Crit. Rev. Solid State Mater. Sci. 43 (4) (2018) 334–366.
  • [7] L. Borrego, J. Costa, J. Jesus, A. Loureiro, J. Ferreira, Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds, Theor Appl Fract Mech 70 (2014) 68–74.
  • [8] C. Huang, W.Y. Li, Z. Zhang, M. Fu, M.-p Planche, H. Liao, et al., Modification of a cold sprayed SiCp/Al5056 composite coating by friction stir processing, Surf. Coat. Technol. 296 (Supplement C) (2016) 69–75.
  • [9] C. Huang, W.Y. Li, Y. Feng, Y. Xie, M.-P. Planche, H. Liao, et al., Microstructural evolution and mechanical properties enhancement of a cold-sprayed CuZn alloy coating with friction stir processing, Mater. Charact. 125 (Supplement C) (2017) 76–82.
  • [10] Z.Y. Ma, A.H. Feng, D.L. Chen, J. Shen, Recent advances in friction stir Welding/Processing of aluminum alloys: microstructural evolution and mechanical properties, Crit. Rev. Solid State Mater. Sci. (2017) 1–65.
  • [11] V. Balasubramanian, V. Ravisankar, G.M. Reddy, Effect of postweld aging treatment on fatigue behavior of pulsed current welded AA7075 aluminum alloy joints, J. Mater. Eng. Perform. 17 (2) (2008) 224–233.
  • [12] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R Rep. 50 (1) (2005) 1–78.
  • [13] R.S. Mishra, P.S. De, N. Kumar, friction stir processing, friction stir welding and processing: science and engineering, Cham, in: Springer International Publishing, 2014, 259–296.
  • [14] V. Patel, V. Badheka, A. Kumar, Friction stir processing as a novel technique to achieve superplasticity in aluminum alloys: process variables, variants, and applications, Metallogr. Microstruct. Anal. 5 (4) (2016) 278–293.
  • [15] F. Liu, Z. Ma, Achieving high strain rate superplasticity in cast 7075Al alloy via friction stir processing, JMatS 44 (10) (2009) 2647–2655.
  • [16] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Superplastic deformation behaviour of friction stir processed 7075Al alloy, Acta Mater. 50 (17) (2002) 4419–4430.
  • [17] K. Wang, F. Liu, Z. Ma, F. Zhang, Realization of exceptionally high elongation at high strain rate in a friction stir processed Al–Zn–Mg–Cu alloy with the presence of liquid phase, Scripta Mater 64 (6) (2011) 572–575.
  • [18] L. Johannes, R. Mishra, Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum, Mater. Sci. Eng. A 464 (1) (2007) 255–260.
  • [19] Z. Ma, R.S. Mishra, F. Liu, Superplastic behavior of micro-regions in two-pass friction stir processed 7075Al alloy, Mater. Sci. Eng. A 505 (1) (2009) 70–78.
  • [20] V. Patel, V. Badheka, A. Kumar, Influence of friction stir processed parameters on superplasticity of Al-Zn-Mg-Cu alloy, Mater Manuf Processes 31 (12) (2016) 1573–1582.
  • [21] V.V. Patel, V. Badheka, A. Kumar, Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy, J. Mater. Process. Technol. 240 (2017) 68–76.
  • [22] V. Patel, W.Y. Li, Y. Xu, Stationary shoulder tool in friction stir processing: a novel low heat input tooling system for magnesium alloy, Mater Manuf Processes 34 (2) (2019) 177–182.
  • [23] A. Orozco-Caballero, C. Cepeda-Jiménez, P. Hidalgo- Manrique, P. Rey, D. Gesto, D. Verdera, et al., Lowering the temperature for high strain rate superplasticity in an Al–Mg– Zn–Cu alloy via cooled friction stir processing, Mater. Chem. Phys. 142 (1) (2013) 182–185.
  • [24] J. Pang, F. Liu, J. Liu, M. Tan, D. Blackwood, Friction stir processing of aluminium alloy AA7075: microstructure, surface chemistry and corrosion resistance, Corros. Sci. 106 (2016) 217–228.
  • [25] X. Feng, H. Liu, J.C. Lippold, Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219, Mater. Charact. 82 (0) (2013) 97–102.
  • [26] F. Liu, Z. Ma, Low-temperature superplasticity of friction stir processed Al–Zn–Mg–Cu alloy, Scripta Mater 58 (8) (2008) 667–670.
  • [27] J.-Q. Su, T.W. Nelson, C.J. Sterling, Friction stir processing of large-area bulk UFG aluminum alloys, Scripta Mater 52 (2) (2005) 135–140.
  • [28] A. Yazdipour, M.A. Shafiei, K. Dehghani, Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083, Mater. Sci. Eng. A 527 (1) (2009) 192–197.
  • [29] A. Orozco-Caballero, M. Álvarez-Leal, P. Hidalgo-Manrique, C. M. Cepeda-Jiménez, O.A. Ruano, F. Carreño, Grain size versus microstructural stability in the high strain rate superplastic response of a severely friction stir processed Al-Zn-Mg-Cu alloy, Mater. Sci. Eng. A 680 (2017) 329–337.
  • [30] M. Conserva, M. Buratti, E. Di Russo, F. Gatto, Age hardening behavior of TMT processed Al-Zn-Mg-Cu alloy, MSEng 11 (2) (1973) 103–112.
  • [31] E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. Sect. B 64 (9) (1951) 747.
  • [32] N. Petch, The cleavage strength of polycrystals, J Iron Steel Inst 174 (1953) 25–28.
  • [33] R.S. Mishra, P.S. De, N. Kumar, Springer, 2014.
  • [34] G. Padhy, C. Wu, S. Gao, Precursor ultrasonic effect on grain structure development of AA6061-T6 friction stir weld, Mater. Des. 116 (2017) 207–218.
  • [35] R. Mishra, T. Bieler, A. Mukherjee, Superplasticity in powder metallurgy aluminum alloys and composites, AcM&M 43 (3) (1995) 877–891.
  • [36] A. Orozco-Caballero, P. Hidalgo-Manrique, C. Cepeda- Jiménez, P. Rey, D. Verdera, O. Ruano, et al., Strategy for severe friction stir processing to obtain acute grain refinement of an Al–Zn–Mg–Cu alloy in three initial precipitation states, Mater. Charact. 112 (2016) 197–205.
  • [37] A. Orozco-Caballero, O.A. Ruano, E.F. Rauch, F. Carreño, Severe friction stir processing of an Al-Zn-Mg-Cu alloy: misorientation and its influence on superplasticity, Mater. Des. 137 (2018) 128–139.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40f839f4-18df-4404-a43c-c20eb5de3be5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.