PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of production process of epoxidized soybean oil with high oxygen content through response surface methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The epoxidation process of soybean oil (SBO) and peracid produced by 50 wt% hydrogen peroxide (H2O2) and formic acid (FA) was studied with sulfuric acid (H2SO4) as a catalyst. Three reaction parameters, including reaction temperature, FA-to-SBO ratio, and H2O2-to-SBO ratio, were investigated, along with the combined effect on oxirane value (OV). Based on response surface methodology (RSM), the Box-Behnken design (BBD) was used to optimize the process parameters. According to the results, the calculated OV (7.34%) and the experimental OV (7.31%) were significantly in agreement. The product was con firmed as epoxidized soybean oil (ESO) by IR and NMR characterization methods. These results demonstrated the reliability of RSM to optimize the SBO reaction to produce ESO with high oxygen content.
Rocznik
Strony
21--29
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wz.
Twórcy
  • Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
  • University of Chinese Academy of Sciences, Beijing 100049, P. R. China
autor
  • Management Committee of Shaoguan NanXiong Hi-teac Industry Development Zone, Nanxiong 512400, P. R. China
autor
  • Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
  • University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, P. R. China
  • CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, P. R. Chin
  • CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong 512400, P. R. Chin
autor
  • Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
  • Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, P. R. Chin
  • CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, P. R. China
  • CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong 512400, P. R. China
autor
  • Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
  • University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, P. R. China
  • CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, P. R. China
  • CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong 512400, P. R. China
  • Management Committee of Shaoguan NanXiong Hi-teac Industry Development Zone, Nanxiong 512400, P. R. China
Bibliografia
  • 1. Sinadinović-Fišer, S., Janković, M. & Borota, O. (2012). Epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion exchange resin. Chem. Engin. Processing: Proc. Intensific., 62, 106–113. DOI: 10.1016/j.cep.2012.08.005.
  • 2. Agu, C.M., Menkiti, M.C., Ekwe, E.B., Agulanna, A.C. (2020). Modeling and optimization of Terminalia catappa L. kernel oil extraction using response surface methodology and artificial neural network. Artific. Intellig. Agric., 4, 1–11. DOI: 10.1016/j.aiia.2020.01.001.
  • 3. Chen, R., Zhang, C., Kessler, M.R. (2015). Polyols and polyurethanes prepared from epoxidized soybean oil ring-opened by polyhydroxy fatty acids with varying OH numbers. J. Appl. Polymer Sci., 132 (1). DOI: 10.1002/app.41213.
  • 4. Mudhaffar, B., Salimon, J. (2010). Epoxidation of vegetable oils and fatty acids: catalysts, methods and advantages. J. Appl. Sci., 10 (15), 1545–1553. DOI: 10.3923/jas.2010.1545.1553.
  • 5. Campanella, A., Baltanas, M.A. (2005). II.REACTIVITY WITH SOLVATED ACETIC AND PERACETIC ACIDS DEGRADATION OF THE OXIRANE RING OF EPOXIDIZED VEGETABLE OILS IN LIQUID-LIQUID SYSTEMS. Latin American Appl. Res., (3), 35. DOI: 10.1007/BF02706658.
  • 6. Campanella, A., Fontanini, C., Baltanás, M.A. (2008). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Engin. J., 414(3), 466–475. DOI: 10.1016/j.cej.2008.07.016.
  • 7. Cai, X., Zheng, J.L., Aguilera, A.F., Vernières-Hassimi, L., Tolvanen, P., Salmi, T., Leveneur, S. (2018). Influence of ring-opening reactions on the kinetics of cottonseed oil epoxidation. Internat. J. Chem. Kinetics, 50(10), 726–741. DOI: 10.1002/kin.21208.
  • 8. Santacesaria, E., Turco, R., Russo, V., Tesser, R., Di Serio, M. (2020). Soybean Oil Epoxidation: Kinetics of the Epoxide Ring Opening Reactions. Processes, 8(9). DOI: 10.3390/pr8091134.
  • 9. Nhan, N.P.T., Hien, T.T., Nhan, L.T.H., Anh, P.N.Q., Huy, L.T., Nguyen, T.C.T., Nguyen, D.T., Bach, L.G. (2018). Application of Response Surface Methodology to Optimize the Process of Saponification Reaction from Coconut Oil in Ben Tre – Vietnam. Solid State Phenomena, 279, 235–239. DOI: 10.4028/www.scientific.net/SSP.279.235.
  • 10. Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. DOI: 10.1016/j.talanta.2008.05.019.
  • 11. Ferreira, S.C., Bruns, R., Ferreira, H.S., Matos, G.D., David, J., Brandão, G., da Silva, E.P., Portugal, L., Dos Reis, P., Souza, A. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica chimica acta, 597 (2), 179–186. DOI: 10.1016/j.aca.2007.07.011.
  • 12. Beg, S., Akhter, S. (2021). Box–Behnken designs and their applications in pharmaceutical product development. Design of Experiments for Pharmaceutical Product Development: Volume I: Basics and Fundamental Principles. 77–85. DOI: 10.1016/B978-0-12-815799-2.00003-4.
  • 13. Box, G.E., Behnken, D.W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455–475. DOI: 10.2307/1266454.
  • 14. Kenechi, N.O., Osarumehnsen, A.F., Linus, C. (2021) Optimization on Rubber Seed Oil Epoxidation Process Parameters Using Response Surface Methodology. Iranian J. Chem. & Chem. Engin. (5/6), 40. DOI: 10.30492/IJCCE.2020.40345.
  • 15. Elkelawy, M., Bastawissi, H.A.-E., Esmaeil, K.K., Radwan, A.M., Panchal, H. Sadasivuni, K.K., Suresh, M., Israr, M. (2020). Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel, 266. DOI: 10.1016/j.fuel.2020.117072.
  • 16. Paquot, C. (2013). Standard methods for the analysis of oils, fats and derivatives. Elsevier:. DOI: 10.1351/pac198153030783.
  • 17. Musik, M., Milchert, E., Malarczyk-Matusiak, K. (2018). Technological parameters of epoxidation of sesame oil with performic acid. Polish J. Chem. Technol., 20(3), 53–59. DOI: 10.2478/pjct-2018-0038.
  • 18. Campanella, A., Fontanini, C., Baltanas, M.A. (2008). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Engin. J., 144(3), 466–475. DOI: 10.1016/j.cej.2008.07.016.
  • 19. Pongsumpun, P., Iwamoto, S., Siripatrawan, U. (2020). Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and anti-fungal activity. Ultrasonics sonochemistry, 60, 104604. DOI: 10.1016/j.ultsonch.2019.05.021.
  • 20. Kousaalya, A.B., Beyene, S.D., Gopal, V., Ayalew, B., Pilla, S. (2018). Green epoxy synthesized from Perilla frutescens: A study on epoxidation and oxirane cleavage kinetics of high-linolenic oil. Industrial Crops and Products, 123, 25–34. DOI: 10.1016/j.indcrop.2018.06.047.
  • 21. Zaher, F., El-Mallah, M., El-Hefnawy, M. (1989). Kinetics of oxirane cleavage in epoxidized soybean oil. J. Amer. Oil Chemists’ Soc., 66(5), 698–700. DOI: 10.1007/BF02669955.
  • 22. Rice, F., Reiff, O.M. (2002). The thermal decomposition of hydrogen peroxide. J. Phys. Chem., 31 (9), 1352–1356. DOI: 10.1007/BF02669955.
  • 23. Campanella, A., Baltanás, M. (2005). Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid systems: I. Hydrolysis and attack by H2O2. Latin Amer. Appl. Res., 35(3), 205–210. DOI: 10.1007/BF02706658.
  • 24. Dong, C.-H., Xie, X.-Q., Wang, X.-L., Zhan, Y., Yao, Y.-J. (2009). Application of Box-Behnken design in optimisation for polysaccharides extraction from cultured mycelium of Cordyceps sinensis. Food Bioprod. Proc., 87(2), 139–144. DOI: 10.1016/j.fbp.2008.06.004.
  • 25. Vianello, C., Piccolo, D., Lorenzetti, A., Salzano, E., Maschio, G. (2018). Study of soybean oil epoxidation: effects of sulfuric acid and the mixing program. Ind. & Engin. Chem. Res., 57(34), 11517–11525. DOI: 10.1021/acs.iecr.8b01109.
  • 26. Farias, M. Martinelli, M. Bottega, D.P. (2010). Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex. Appl. Catal. A: General, 384 (1-2), 213–219. DOI: 10.1016/j.apcata.2010.06.038.
  • 27. Janković, M., Sinadinović-Fišer, S., Govedarica, O., Pavličević, J., Budinski-Simendić, J. (2017). Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: pseudo-homogeneous model. Chem. Ind. Chem. Engin. Quarterly, 23(1), 97–111. DOI: 10.2298/CICEQ150702014J.
  • 28. Turco, R., Vitiello, R., Russo, V., Tesser, R., Santacesaria, E., Di Serio, M. (2013). Selective epoxidation of soybean oil with performic acid catalyzed by acidic ionic exchange resins. Green Proc. Synthesis, 2(5), 427–434. DOI: 10.1515/gps-2013-0045.
  • 29. Wu, J., Jiang, P., Qin, X., Ye, Y., Leng, Y. (2014). Peroxopolyoxotungsten-based Ionic Hybrid as a Highly Efficient Recyclable Catalyst for Epoxidation of Vegetable oil with H2O2. Bull. Korean Chem. Soc., 35(6), 1675–1680. DOI: 10.5012/bkcs.2014.35.6.1675.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40f769d3-3887-4c48-9c4a-bc59c771d2a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.